Araştırma Makalesi
BibTex RIS Kaynak Göster

ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴

Yıl 2019, , 166 - 174, 29.07.2019
https://doi.org/10.33773/jum.565267

Öz

In the present paper we consider weak biharmonic rotational surfaces in Euclidean 4-space E⁴. We have proved that the general rotational surface of parallel mean curvature vector field is weak biharmonic then either it is minimal or a constant mean curvature. Further, we show that if Vranceanu surface of constant mean curvature is weak-biharmonic then it is a Clifford torus in E⁴.

Kaynakça

  • Referans1 K. Arslan, B. Kılıç Bayram, B. Bulca and G. Öztürk, Generalized Rotation Surfaces in E⁴. Results in Math. 61, 315--327 (2012).Referans2 : K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic anti-invariant submanifolds in Sasakian space forms. Beitrage Algebra Geom. 48, 191--207 (2007). Referans3 : A. Balmus, S. Montaldo and C. Oniciuc, Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168, 201--220 (2008). Referans4: A. Balmus, S. Montaldo and C. Oniciuc, Biharmonic Hypersurfaces in 4-Dimensional Space Forms. Math. Nachr. 283, 1696-1705 (2010). Referans5 : M. Barros and O.J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 129, 2545-2549 (1995). Referans6 : R. Caddeo, S. Montaldo and C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130, 109--123 (2002). Referans7 : B. Y. Chen,Geometry of Submanifolds, Dekker, New York (1973).Referans8: B.Y. Chen, A report on submanifolds of finite type. Soochow J. Math. 22, 117--337 (1996). Referans9 : B-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Memoirs of Fac. of Science, Kyushu University, Series A 45, 323-347 (1991). Referans10 : F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12, 191-210 (1890). Referans11 : D.V. Cuong, Surfaces of Revolution with Constant Gaussian Curvature in Four-Space, Asian-Europian J. Math. 6 (2013). Referans12 : De Smet, D.J., Dillen F., Verstrealen L.and Vrancken L. A pointwise inequality in submanifold theory. Arc. Mat. (Bruno), 115-128 (1999).Referans13: F. Defever, Hypersurfaces of E⁴ with harmonic mean curvature vector field, Math. Nachr. 196, 61-69 1998). Referans14 : F. Defever, Bijdrageln tot de theorie van conform platte, semisymmetrische, en biharmonische deelvari ̈eteiten, Doctoral Thesis, Leuven (1999). Referans15 : I. Dimitric. Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst.Math. Acad. Sinica, 20, 53-65 (1992). Referans16 : U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space E⁴ with pointwise 1-type Gauss map, Math. Com., 17, 71-81 (2012). Referans17 : G. Ganchev and V. Milousheva, On the Theory of Surfaces in the Four-dimensional Euclidean Space. Kodai Math. J., 31, 183-198 (2008).Referans18: Th. Hasanis and Th. Vlachos, Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr. 172, 145-169 (1995). Referans19 : B. Kiliç, K. Arslan , Ü. Lumiste and C. Murathan, On weak biharmonic submanifolds and 2-parallelity. Diff. Geo. Dyn. Sys. 5, 39-48 (2003). Referans20: D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic Submanifolds of Cⁿ. arXiv:0902.0268v1 [math.DG] 2 Feb 2009. Referans21: N. H. Kuiper, Minimal Total Absolute Curvature for Immersions. Invent. Math., 10, 209-238 (1970). Referans22: C. Moore, Surfaces of Rotations in a Space of Four Dimensions, Ann. Math. 2nd Ser., 21, 81-93 (1919). Referans23: Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds. arXiv:math.DG/09011507v1. Referans24: Y.-L. Ou, Some recent progress of Biharmonic Submanifolds, arXiv:1511.09103v1 [math.DG] 29 Nov 2015. Referans25: G. Vranceanu, Surfaces de Rotation dans E⁴, rev. Roum. Math. Pures Appl. XXII(6), 857-862 (1977). Referans26: Y.C. Wong, Contributions to the theory of surfaces in 4-space of constant curvature, Trans. Amer. Math. Soc, 59, 467-507 (1946). Referans27: D.W. Yoon, Some Properties of the Clifford Torus as Rotation Surfaces, Indian J. Pure Appl. Math. 34, 907-915 (2003).Referans28: S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96,346--366 (1974).
Yıl 2019, , 166 - 174, 29.07.2019
https://doi.org/10.33773/jum.565267

Öz

Kaynakça

  • Referans1 K. Arslan, B. Kılıç Bayram, B. Bulca and G. Öztürk, Generalized Rotation Surfaces in E⁴. Results in Math. 61, 315--327 (2012).Referans2 : K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic anti-invariant submanifolds in Sasakian space forms. Beitrage Algebra Geom. 48, 191--207 (2007). Referans3 : A. Balmus, S. Montaldo and C. Oniciuc, Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168, 201--220 (2008). Referans4: A. Balmus, S. Montaldo and C. Oniciuc, Biharmonic Hypersurfaces in 4-Dimensional Space Forms. Math. Nachr. 283, 1696-1705 (2010). Referans5 : M. Barros and O.J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 129, 2545-2549 (1995). Referans6 : R. Caddeo, S. Montaldo and C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130, 109--123 (2002). Referans7 : B. Y. Chen,Geometry of Submanifolds, Dekker, New York (1973).Referans8: B.Y. Chen, A report on submanifolds of finite type. Soochow J. Math. 22, 117--337 (1996). Referans9 : B-Y. Chen and S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Memoirs of Fac. of Science, Kyushu University, Series A 45, 323-347 (1991). Referans10 : F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12, 191-210 (1890). Referans11 : D.V. Cuong, Surfaces of Revolution with Constant Gaussian Curvature in Four-Space, Asian-Europian J. Math. 6 (2013). Referans12 : De Smet, D.J., Dillen F., Verstrealen L.and Vrancken L. A pointwise inequality in submanifold theory. Arc. Mat. (Bruno), 115-128 (1999).Referans13: F. Defever, Hypersurfaces of E⁴ with harmonic mean curvature vector field, Math. Nachr. 196, 61-69 1998). Referans14 : F. Defever, Bijdrageln tot de theorie van conform platte, semisymmetrische, en biharmonische deelvari ̈eteiten, Doctoral Thesis, Leuven (1999). Referans15 : I. Dimitric. Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst.Math. Acad. Sinica, 20, 53-65 (1992). Referans16 : U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space E⁴ with pointwise 1-type Gauss map, Math. Com., 17, 71-81 (2012). Referans17 : G. Ganchev and V. Milousheva, On the Theory of Surfaces in the Four-dimensional Euclidean Space. Kodai Math. J., 31, 183-198 (2008).Referans18: Th. Hasanis and Th. Vlachos, Hypersurfaces in E⁴ with harmonic mean curvature vector field, Math. Nachr. 172, 145-169 (1995). Referans19 : B. Kiliç, K. Arslan , Ü. Lumiste and C. Murathan, On weak biharmonic submanifolds and 2-parallelity. Diff. Geo. Dyn. Sys. 5, 39-48 (2003). Referans20: D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic Submanifolds of Cⁿ. arXiv:0902.0268v1 [math.DG] 2 Feb 2009. Referans21: N. H. Kuiper, Minimal Total Absolute Curvature for Immersions. Invent. Math., 10, 209-238 (1970). Referans22: C. Moore, Surfaces of Rotations in a Space of Four Dimensions, Ann. Math. 2nd Ser., 21, 81-93 (1919). Referans23: Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds. arXiv:math.DG/09011507v1. Referans24: Y.-L. Ou, Some recent progress of Biharmonic Submanifolds, arXiv:1511.09103v1 [math.DG] 29 Nov 2015. Referans25: G. Vranceanu, Surfaces de Rotation dans E⁴, rev. Roum. Math. Pures Appl. XXII(6), 857-862 (1977). Referans26: Y.C. Wong, Contributions to the theory of surfaces in 4-space of constant curvature, Trans. Amer. Math. Soc, 59, 467-507 (1946). Referans27: D.W. Yoon, Some Properties of the Clifford Torus as Rotation Surfaces, Indian J. Pure Appl. Math. 34, 907-915 (2003).Referans28: S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math. 96,346--366 (1974).
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Kadri Arslan 0000-0002-1440-7050

Merve Harmanlı Bu kişi benim

Betül Bulca

Yayımlanma Tarihi 29 Temmuz 2019
Gönderilme Tarihi 14 Mayıs 2019
Kabul Tarihi 24 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Arslan, K., Harmanlı, M., & Bulca, B. (2019). ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. Journal of Universal Mathematics, 2(2), 166-174. https://doi.org/10.33773/jum.565267
AMA Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. Temmuz 2019;2(2):166-174. doi:10.33773/jum.565267
Chicago Arslan, Kadri, Merve Harmanlı, ve Betül Bulca. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics 2, sy. 2 (Temmuz 2019): 166-74. https://doi.org/10.33773/jum.565267.
EndNote Arslan K, Harmanlı M, Bulca B (01 Temmuz 2019) ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. Journal of Universal Mathematics 2 2 166–174.
IEEE K. Arslan, M. Harmanlı, ve B. Bulca, “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”, JUM, c. 2, sy. 2, ss. 166–174, 2019, doi: 10.33773/jum.565267.
ISNAD Arslan, Kadri vd. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics 2/2 (Temmuz 2019), 166-174. https://doi.org/10.33773/jum.565267.
JAMA Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. 2019;2:166–174.
MLA Arslan, Kadri vd. “ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴”. Journal of Universal Mathematics, c. 2, sy. 2, 2019, ss. 166-74, doi:10.33773/jum.565267.
Vancouver Arslan K, Harmanlı M, Bulca B. ON WEAK BIHARMONIC GENERALIZED ROTATIONAL SURFACE IN E⁴. JUM. 2019;2(2):166-74.