Araştırma Makalesi
BibTex RIS Kaynak Göster

EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION

Yıl 2018, Cilt: 1 Sayı: 2, 130 - 147, 31.07.2018

Öz

In this paper we are interested in studying the existence of solutions for a controlled impulsive fractional evolution equations. We use several tools such as fractional calculus, xed point theorems and the theory of semi-group. We rst give some preliminaries and notations, the second part of the work we provide an existence result for our problem and in the nal section, we give some examples to show the importance of our results.

Kaynakça

  • A. Angaraj, K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with non-local conditions, Nonlinear Anal. 70(2009), 2717-2721.
  • A. Anguraj, M. Lathamaheshwari, Existence results for fractional differential equations with infinite delay and interval impulsive conditions, Malaya J. Mat 2 (1) (2014) 16-23.
  • X. Fu, X. Liu and B. Lu, On a new class of impulsive fractional evolution equations, Advances in difference equations (2015) 2015:227.
  • H. James, Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 77-85.
  • Hernandez, E., O'Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641-1649 (2013)
  • Kilbas, AA, Srivastava, HM, Trujillo, JJ:Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amesterdam (2006)
  • V. Lakshmikantham, DD. Bainov, P.S. Simeonov, Theory of impulsive differential equations, World scientific, Singapore, 1989.
  • Shengda Liu, JinRong Wang, Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses, J. Optim. Theory Appl. DOI 10.1007/s10957-017-1122-3.
  • J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal, Real World Appl. 10 (2009), 680-690.
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.
  • W. Wei, X. Xiang, Y. Peng:Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141-156 (2006).
  • Y. Zhou, F. Jiao: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal, Real World Appl. 11, 4465-4475 (2010)
  • Peter L.Falb, Infinite Dimensional Control Problems:On the Closure of the Set of Attainable States for Linear Systems, Mathematical Analysis and Application 9, 12-22 (1964).
  • Y. Zhou, F. Jiao:Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063-1077 (2010)
Yıl 2018, Cilt: 1 Sayı: 2, 130 - 147, 31.07.2018

Öz

Kaynakça

  • A. Angaraj, K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with non-local conditions, Nonlinear Anal. 70(2009), 2717-2721.
  • A. Anguraj, M. Lathamaheshwari, Existence results for fractional differential equations with infinite delay and interval impulsive conditions, Malaya J. Mat 2 (1) (2014) 16-23.
  • X. Fu, X. Liu and B. Lu, On a new class of impulsive fractional evolution equations, Advances in difference equations (2015) 2015:227.
  • H. James, Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems 6 (1999), 77-85.
  • Hernandez, E., O'Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641-1649 (2013)
  • Kilbas, AA, Srivastava, HM, Trujillo, JJ:Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amesterdam (2006)
  • V. Lakshmikantham, DD. Bainov, P.S. Simeonov, Theory of impulsive differential equations, World scientific, Singapore, 1989.
  • Shengda Liu, JinRong Wang, Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses, J. Optim. Theory Appl. DOI 10.1007/s10957-017-1122-3.
  • J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal, Real World Appl. 10 (2009), 680-690.
  • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.
  • W. Wei, X. Xiang, Y. Peng:Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141-156 (2006).
  • Y. Zhou, F. Jiao: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal, Real World Appl. 11, 4465-4475 (2010)
  • Peter L.Falb, Infinite Dimensional Control Problems:On the Closure of the Set of Attainable States for Linear Systems, Mathematical Analysis and Application 9, 12-22 (1964).
  • Y. Zhou, F. Jiao:Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063-1077 (2010)
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Khalid Hilal Bu kişi benim

Lahcen Ibnelazyz Bu kişi benim

Karim Guida

Said Melliani 0000-0002-5150-1185

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 15 Mayıs 2018
Kabul Tarihi 5 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Hilal, K., Ibnelazyz, L., Guida, K., Melliani, S. (2018). EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION. Journal of Universal Mathematics, 1(2), 130-147.
AMA Hilal K, Ibnelazyz L, Guida K, Melliani S. EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION. JUM. Temmuz 2018;1(2):130-147.
Chicago Hilal, Khalid, Lahcen Ibnelazyz, Karim Guida, ve Said Melliani. “EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 130-47.
EndNote Hilal K, Ibnelazyz L, Guida K, Melliani S (01 Temmuz 2018) EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION. Journal of Universal Mathematics 1 2 130–147.
IEEE K. Hilal, L. Ibnelazyz, K. Guida, ve S. Melliani, “EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION”, JUM, c. 1, sy. 2, ss. 130–147, 2018.
ISNAD Hilal, Khalid vd. “EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION”. Journal of Universal Mathematics 1/2 (Temmuz 2018), 130-147.
JAMA Hilal K, Ibnelazyz L, Guida K, Melliani S. EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION. JUM. 2018;1:130–147.
MLA Hilal, Khalid vd. “EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 130-47.
Vancouver Hilal K, Ibnelazyz L, Guida K, Melliani S. EXISTENCE OF MILD SOLUTIONS FOR AN IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NON-LOCAL CONDITION. JUM. 2018;1(2):130-47.