Araştırma Makalesi
BibTex RIS Kaynak Göster

A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM

Yıl 2018, Cilt: 1 Sayı: 2, 104 - 109, 31.07.2018

Öz

In this paper we propose a topic on cryptography. It is a digital signature protocol. Indeed, we have improved the signature of Schnorr based on the problem of the discrete logarithm to make it more secure. We integrated the RSA algorithm into our scheme, which secures the signature process even if the signer uses the same signature key.

Kaynakça

  • Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173􀀀206.
  • Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
  • Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
  • El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
  • Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
  • Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
  • Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
  • Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
  • Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
  • Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
  • Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.
Yıl 2018, Cilt: 1 Sayı: 2, 104 - 109, 31.07.2018

Öz

Kaynakça

  • Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173􀀀206.
  • Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
  • Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
  • El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
  • Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
  • Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
  • Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
  • Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
  • Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
  • Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
  • Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Leila Zehhafi

Omar Khadir Bu kişi benim

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 16 Mayıs 2018
Kabul Tarihi 1 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Zehhafi, L., & Khadir, O. (2018). A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. Journal of Universal Mathematics, 1(2), 104-109.
AMA Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. Temmuz 2018;1(2):104-109.
Chicago Zehhafi, Leila, ve Omar Khadir. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 104-9.
EndNote Zehhafi L, Khadir O (01 Temmuz 2018) A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. Journal of Universal Mathematics 1 2 104–109.
IEEE L. Zehhafi ve O. Khadir, “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”, JUM, c. 1, sy. 2, ss. 104–109, 2018.
ISNAD Zehhafi, Leila - Khadir, Omar. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics 1/2 (Temmuz 2018), 104-109.
JAMA Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. 2018;1:104–109.
MLA Zehhafi, Leila ve Omar Khadir. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 104-9.
Vancouver Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. 2018;1(2):104-9.