Araştırma Makalesi
BibTex RIS Kaynak Göster

BIPOLAR SOFT FILTER

Yıl 2020, Cilt: 3 Sayı: 1, 21 - 27, 31.01.2020
https://doi.org/10.33773/jum.679829

Öz

In this study, we present bipolar soft filters which are defined over an initial universe using a fixed parameter set. At the same time, the concepts
of bipolar soft filter subbase and bipolar soft filter base are given. In addition, we give examples in order to better understand the subject in our paper.

Kaynakça

  • A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., Vol. 21, N. 1, pp. 113-119, (2012).
  • N. Çağman, S. Karataş, S. Enginoğlu , Soft topology, Comput. Math. Appl., Vol. 62, pp. 351-358, (2011).
  • S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 4058-4067, (2011).
  • F. Karaaslan and S. Karatas, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 07, 1550054, (2015).
  • P.K. Maji, R. Biswas, and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, Vol. 45 N. 4-5, pp. 555-562, (2003).
  • W.K. Min, A note on soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 3524-3528, (2011).
  • D. Molodtsov, Soft set theory first results, Comput. Math. Appl., Vol. 37, pp. 19-31, (1999).
  • B. Pazar Varol, H. Aygün, On soft hausdorff spaces, Ann. Fuzzy Math. Inf., Vol. 5, N. 1, pp. 15-24, (2013).
  • M. Shabir, M. Naz , On soft topological spaces, Comput. Math. Appl., 61, 1786-1799, (2011).
  • M. Shabir and M. Naz, On Bipolar Soft Sets, arXiv: 1303.1344v1 [math.LO], (2013).
  • M. Shabir and A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakari J. Sci. Technol., Vol. 39, N. 3, pp. 359-371, (2017).
  • Ş. Yüksel, N. Tozlu, G.Z. Ergül, Soft Filter, Math Sci., Vol. 8, N. 119, (2014).
  • İ. Zorlutuna, M. Akdağ, W.K. Min, S. Atmaca, Remarks On soft topological spaces, Ann. Fuzzy Math. Inf., Vol. 3, N. 2, pp. 171-185, (2012).
  • Y.T. Öztürk, On Bipolar Soft Topological Space, Journal of New Theory, Vol. 20, pp. 64-75, (2018).
Yıl 2020, Cilt: 3 Sayı: 1, 21 - 27, 31.01.2020
https://doi.org/10.33773/jum.679829

Öz

Kaynakça

  • A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., Vol. 21, N. 1, pp. 113-119, (2012).
  • N. Çağman, S. Karataş, S. Enginoğlu , Soft topology, Comput. Math. Appl., Vol. 62, pp. 351-358, (2011).
  • S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 4058-4067, (2011).
  • F. Karaaslan and S. Karatas, A new approach to bipolar soft sets and its applications, Discrete Math. Algorithm. Appl., 07, 1550054, (2015).
  • P.K. Maji, R. Biswas, and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, Vol. 45 N. 4-5, pp. 555-562, (2003).
  • W.K. Min, A note on soft topological spaces, Comput. Math. Appl., Vol. 62, pp. 3524-3528, (2011).
  • D. Molodtsov, Soft set theory first results, Comput. Math. Appl., Vol. 37, pp. 19-31, (1999).
  • B. Pazar Varol, H. Aygün, On soft hausdorff spaces, Ann. Fuzzy Math. Inf., Vol. 5, N. 1, pp. 15-24, (2013).
  • M. Shabir, M. Naz , On soft topological spaces, Comput. Math. Appl., 61, 1786-1799, (2011).
  • M. Shabir and M. Naz, On Bipolar Soft Sets, arXiv: 1303.1344v1 [math.LO], (2013).
  • M. Shabir and A. Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, Songklanakari J. Sci. Technol., Vol. 39, N. 3, pp. 359-371, (2017).
  • Ş. Yüksel, N. Tozlu, G.Z. Ergül, Soft Filter, Math Sci., Vol. 8, N. 119, (2014).
  • İ. Zorlutuna, M. Akdağ, W.K. Min, S. Atmaca, Remarks On soft topological spaces, Ann. Fuzzy Math. Inf., Vol. 3, N. 2, pp. 171-185, (2012).
  • Y.T. Öztürk, On Bipolar Soft Topological Space, Journal of New Theory, Vol. 20, pp. 64-75, (2018).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Orhan Dalkılıç

Naime Demirtaş

Yayımlanma Tarihi 31 Ocak 2020
Gönderilme Tarihi 24 Ocak 2020
Kabul Tarihi 27 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Dalkılıç, O., & Demirtaş, N. (2020). BIPOLAR SOFT FILTER. Journal of Universal Mathematics, 3(1), 21-27. https://doi.org/10.33773/jum.679829
AMA Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. Ocak 2020;3(1):21-27. doi:10.33773/jum.679829
Chicago Dalkılıç, Orhan, ve Naime Demirtaş. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics 3, sy. 1 (Ocak 2020): 21-27. https://doi.org/10.33773/jum.679829.
EndNote Dalkılıç O, Demirtaş N (01 Ocak 2020) BIPOLAR SOFT FILTER. Journal of Universal Mathematics 3 1 21–27.
IEEE O. Dalkılıç ve N. Demirtaş, “BIPOLAR SOFT FILTER”, JUM, c. 3, sy. 1, ss. 21–27, 2020, doi: 10.33773/jum.679829.
ISNAD Dalkılıç, Orhan - Demirtaş, Naime. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics 3/1 (Ocak 2020), 21-27. https://doi.org/10.33773/jum.679829.
JAMA Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. 2020;3:21–27.
MLA Dalkılıç, Orhan ve Naime Demirtaş. “BIPOLAR SOFT FILTER”. Journal of Universal Mathematics, c. 3, sy. 1, 2020, ss. 21-27, doi:10.33773/jum.679829.
Vancouver Dalkılıç O, Demirtaş N. BIPOLAR SOFT FILTER. JUM. 2020;3(1):21-7.

Cited By