Yıl 2021, Cilt 4 , Sayı 1, Sayfalar 73 - 80 2021-01-31

SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES

Zeki CEYLAN [1]


We study a self-adjoint conformable dynamic equation of second order on an arbitrary time scale $\mathbb{T}$. We state an existence and uniqueness theorem for the solutions of this equation. We prove the conformable Lagrange identity on time scales. Then, we consider a conformable eigenvalue problem generated by the above-mentioned dynamic equation of second order and we examine some of the spectral properties of this boundary value problem.
Time scales, Conformable derivative
  • Referans1 T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279(2015), 57-66.
  • Referans2 M. Abu Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Internat. J. Diff. Equ. Appl., 13(2014), No. 3, 177-183.
  • Referans3 M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, Internat. J. Pure Appl. Math., 94(2014), No. 2, 215-221.
  • Referans4 H. Abu-Shaab, R. Khalil, Solution of some conformable fractional differential equations, Int. J. Pure Appl. Math., 103(2015), No. 4, 667-673.
  • Referans5 M. J. Lazo, D. F. M. Torres, Variational calculus with conformable fractional derivatives, IEEE/CAA Journal of Automatica Sinica, 4(April 2017), No. 2.
  • Referans6 W. Rosa, J. Weberspil, Dual conformable derivative:Definition, simple properties and perspectives for applications, Chaos, Solitons and Fractals, 117(2018), 137-141.
  • Referans7 D. Anderson, R. I. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic Journal of Differential Equations, 29(2015), 1-10.
  • Referans8 H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, Journal of Function Spaces, Volume 2015, Article ID 706383, 6 pages, doi:10.1155/2015/706383.
  • Referans9 B. P. Allahverdiev, H. Tuna, Y. Yalcinkaya, Conformable fractional Sturm-Liouville equation, Math. Meth. Appl. Sci., 42(2019), 3508-3526.
  • Referans10 N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, Journal of King Saud University-Science, 28(2016), 93-98.
  • Referans11 M. Bohner, V. F. Hatipoğlu, Dynamic Cobweb models with conformable fractional derivatives, Nonlinear Anal., Hybrid Syst. 32(2019), 157-167.
  • Referans12 T. Gulsen, E. Yilmaz, S. Goktas, Conformable fractional Dirac system on time scales, J. Inequal. Appl., 2017:10, 2017.
  • Referans13 T. Gulsen, E. Yilmaz, H. Kemaloglu, Conformable fractional Sturm-Liouville equation and some existence results on time scales, Turk. J. Math. 42(2018), No. 3, 1348-1360.
  • Referans14 S. Rahmat, M. Rafi, A new definition of conformable fractional derivative on arbitrary time scales, Adv. Difference Equ., 2019:354, 2019.
  • Referans15 D. F. Zhou, X. X. You, A new fractional derivative on time scales, Adv. Appl. Math. Anal., 11(2016), No. 1, 1-9.
  • Referans16 C. Zhang, S. Sun, Sturm-Picone comparison theorem of a kind of conformable fractional differential equations on time scales, J. Appl. math. Comput., 55(2017), 191-203, doi:10.1007/s12190-016-1032-9.
  • Referans17 M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston Inc. Boston, MA, 2001.
Birincil Dil en
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Yazar: Zeki CEYLAN (Sorumlu Yazar)
Kurum: MERSİN ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2021

Bibtex @araştırma makalesi { jum695777, journal = {Journal of Universal Mathematics}, issn = {2618-5660}, eissn = {2618-5660}, address = {editorinchief@junimath.com}, publisher = {Gökhan ÇUVALCIOĞLU}, year = {2021}, volume = {4}, pages = {73 - 80}, doi = {10.33773/jum.695777}, title = {SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES}, key = {cite}, author = {Ceylan, Zeki} }
APA Ceylan, Z . (2021). SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES . Journal of Universal Mathematics , 4 (1) , 73-80 . DOI: 10.33773/jum.695777
MLA Ceylan, Z . "SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES" . Journal of Universal Mathematics 4 (2021 ): 73-80 <https://dergipark.org.tr/tr/pub/jum/issue/60411/695777>
Chicago Ceylan, Z . "SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES". Journal of Universal Mathematics 4 (2021 ): 73-80
RIS TY - JOUR T1 - SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES AU - Zeki Ceylan Y1 - 2021 PY - 2021 N1 - doi: 10.33773/jum.695777 DO - 10.33773/jum.695777 T2 - Journal of Universal Mathematics JF - Journal JO - JOR SP - 73 EP - 80 VL - 4 IS - 1 SN - 2618-5660-2618-5660 M3 - doi: 10.33773/jum.695777 UR - https://doi.org/10.33773/jum.695777 Y2 - 2021 ER -
EndNote %0 Journal of Universal Mathematics SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES %A Zeki Ceylan %T SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES %D 2021 %J Journal of Universal Mathematics %P 2618-5660-2618-5660 %V 4 %N 1 %R doi: 10.33773/jum.695777 %U 10.33773/jum.695777
ISNAD Ceylan, Zeki . "SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES". Journal of Universal Mathematics 4 / 1 (Ocak 2021): 73-80 . https://doi.org/10.33773/jum.695777
AMA Ceylan Z . SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES. JUM. 2021; 4(1): 73-80.
Vancouver Ceylan Z . SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES. Journal of Universal Mathematics. 2021; 4(1): 73-80.
IEEE Z. Ceylan , "SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES", Journal of Universal Mathematics, c. 4, sayı. 1, ss. 73-80, Oca. 2021, doi:10.33773/jum.695777