Araştırma Makalesi
BibTex RIS Kaynak Göster

1-GUARDABLE SUBGRAPHS OF GRAPHS

Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 138 - 145, 29.12.2024
https://doi.org/10.33773/jum.1564717

Öz

The cops and robber game is played on a graph. There are two players in the game, consisting of a set of cops and only one robber. They
play, respectively; on each player’s turn, the player may either stay in their vertex or move to an adjacent vertex. The robber is captured when
one of the cops enters the vertex with the robber. Therefore, the cop wins the game, and the game ends.
In this study, 1-guardable subgraphs of graphs in the game of cops and robber are considered. We mention some special subgraphs and their
relations. It is known that if the subgraph is 1-guardable, then it must be isometric, but the converse of this argument may not be true. We
show that for the converse to be true, some conditions must be added.

Kaynakça

  • R. Nowakowski, P. Winkler, Vertex-to-Vertex Pursuit in a Graph, Discrete Mathematics, Vol.43, No.2-3, pp.235-239 (1983).
  • M. Aigner, M. Fromme, A Game of Cops and Robbers, Discrete Applied Mathematics, Vol.8, No.1, pp.1-12 (1984).
  • A. Berarducci, B. Intrigila, On the Cop Number of a Graph, Advances in Applied Mathematics, Vol.14, No.4, pp.389-403 (1993).
  • A. Bonato, R. Nowakowski, The Game of Cops and Robbers on Graphs, American Mathematical Society, Providence, RI (2011).
  • P. Frankl, Cops and Robbers in Graphs with Large Girth and Cayley-Graphs, Discrete Applied Mathematics, Vol.17, No.3, pp.301-305 (1987).
  • E. Chiniforooshan, A Better Bound for the Cop Number of General Graphs, Journal of Graph Theory, Vol.58, No.1, pp.45-48 (2008).
  • L. Lu, X. Peng, On Meyniel's Conjecture of the cop Number, Journal of Graph Theory, Vol.71, No.2, pp.192-205 (2012).
  • T. Ball, R. W. Bell, J. Guzman, On the Cop Number of Generalized Petersen Graphs, Discrete Mathematics (2016).
  • A. Quilliot, A Retraction Problem on Graph Theory, Discrete Mathematics, Vol.54, pp.61-71 (1985).
  • A. Bonato, P. Golovach, G. Hahn, J. Kratochvil, The Capture Time of a Graph, Discrete Mathematics, Vol.309, No.18,SI, pp.5588-5595 (2009).
  • T. Gavenciak, Cop-win Graphs with Maximum Capture-time, Discrete Mathematics, Vol.310, No.10-11, pp.1557-1563 (2010).
  • L. Lu, Z. Wang, A Note on 1-Guardable Graphs in the Cops and Robber Game, Ariv, eprint-1804.02802, math.Co (2018).
Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 138 - 145, 29.12.2024
https://doi.org/10.33773/jum.1564717

Öz

Kaynakça

  • R. Nowakowski, P. Winkler, Vertex-to-Vertex Pursuit in a Graph, Discrete Mathematics, Vol.43, No.2-3, pp.235-239 (1983).
  • M. Aigner, M. Fromme, A Game of Cops and Robbers, Discrete Applied Mathematics, Vol.8, No.1, pp.1-12 (1984).
  • A. Berarducci, B. Intrigila, On the Cop Number of a Graph, Advances in Applied Mathematics, Vol.14, No.4, pp.389-403 (1993).
  • A. Bonato, R. Nowakowski, The Game of Cops and Robbers on Graphs, American Mathematical Society, Providence, RI (2011).
  • P. Frankl, Cops and Robbers in Graphs with Large Girth and Cayley-Graphs, Discrete Applied Mathematics, Vol.17, No.3, pp.301-305 (1987).
  • E. Chiniforooshan, A Better Bound for the Cop Number of General Graphs, Journal of Graph Theory, Vol.58, No.1, pp.45-48 (2008).
  • L. Lu, X. Peng, On Meyniel's Conjecture of the cop Number, Journal of Graph Theory, Vol.71, No.2, pp.192-205 (2012).
  • T. Ball, R. W. Bell, J. Guzman, On the Cop Number of Generalized Petersen Graphs, Discrete Mathematics (2016).
  • A. Quilliot, A Retraction Problem on Graph Theory, Discrete Mathematics, Vol.54, pp.61-71 (1985).
  • A. Bonato, P. Golovach, G. Hahn, J. Kratochvil, The Capture Time of a Graph, Discrete Mathematics, Vol.309, No.18,SI, pp.5588-5595 (2009).
  • T. Gavenciak, Cop-win Graphs with Maximum Capture-time, Discrete Mathematics, Vol.310, No.10-11, pp.1557-1563 (2010).
  • L. Lu, Z. Wang, A Note on 1-Guardable Graphs in the Cops and Robber Game, Ariv, eprint-1804.02802, math.Co (2018).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç)
Bölüm Araştırma Makalesi
Yazarlar

Nazlıcan Çakmak 0009-0007-1289-926X

Emrah Akyar 0000-0003-3045-5092

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 4 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Kaynak Göster

APA Çakmak, N., & Akyar, E. (2024). 1-GUARDABLE SUBGRAPHS OF GRAPHS. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 138-145. https://doi.org/10.33773/jum.1564717
AMA Çakmak N, Akyar E. 1-GUARDABLE SUBGRAPHS OF GRAPHS. JUM. Aralık 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):138-145. doi:10.33773/jum.1564717
Chicago Çakmak, Nazlıcan, ve Emrah Akyar. “1-GUARDABLE SUBGRAPHS OF GRAPHS”. Journal of Universal Mathematics 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024): 138-45. https://doi.org/10.33773/jum.1564717.
EndNote Çakmak N, Akyar E (01 Aralık 2024) 1-GUARDABLE SUBGRAPHS OF GRAPHS. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 138–145.
IEEE N. Çakmak ve E. Akyar, “1-GUARDABLE SUBGRAPHS OF GRAPHS”, JUM, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", ss. 138–145, 2024, doi: 10.33773/jum.1564717.
ISNAD Çakmak, Nazlıcan - Akyar, Emrah. “1-GUARDABLE SUBGRAPHS OF GRAPHS”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024), 138-145. https://doi.org/10.33773/jum.1564717.
JAMA Çakmak N, Akyar E. 1-GUARDABLE SUBGRAPHS OF GRAPHS. JUM. 2024;7:138–145.
MLA Çakmak, Nazlıcan ve Emrah Akyar. “1-GUARDABLE SUBGRAPHS OF GRAPHS”. Journal of Universal Mathematics, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, ss. 138-45, doi:10.33773/jum.1564717.
Vancouver Çakmak N, Akyar E. 1-GUARDABLE SUBGRAPHS OF GRAPHS. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):138-45.