Teorik Makale
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 8 Sayı: 1, 52 - 69, 31.01.2025
https://doi.org/10.33773/jum.1551816

Öz

Kaynakça

  • R. P. Chapra, S.C. Canale, Numerical Methods for Engineers, McGraw-Hill Higher Education, New York, (2002).
  • B. Köse, B. Demirtürk, and Ş. Konca, Finding Solutions of Nonlinear Equation Systems with Newton Raphson and Red Fox Methods, 6th International Graduate Studies Congress-IGSCONG 2024, June 5-8, 2024.
  • B. Demirtürk, B. Köse, Ş. Konca, Finding the Solution of a System of Nonlinear Equations with Sine Cosine and Particle Swarm Optimization Algorithms, 6th International Istanbul Modern Scientific Research Congress, 5-7 July 2024, Istanbul, (2024).
  • T. Gemechu, S. Thota, On New Root Finding Algorithm for Solving Nonlinear Transcendental Equations, International Journal of Chemistry, Mathematics and Physics (IJCMP), Vol.4, No.2, pp.18-24 (2020).
  • T. Gemechu, Root finding for nonlinear equations, Mathematical Theory and Modeling, Vol.8, No.7, 10 pages, (2018).
  • V. Y. Semenov, A Method to Find all the Roots of the System of Nonlinear Algebraic Equations Based on the Krawczyk Operator, Cybernetic and Systems Analysis, Vol.51, No.5, pp.819-825 (2015).
  • J. M. Ortega, W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, (1970).
  • C. T. Kelley, Iterative methods for linear and nonlinear equations, Society for Industrial and Applied Mathematics, (1995).
  • J. F. Traub, Iterative Methods for the Solution of Equations; American Mathematical Soc.: Washington, WA, USA, (1982).
  • C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation, Vol.19, pp.577-593 (1965).
  • B. Köse, F. Kaya, Öğretme ve Öğrenme Tabanlı Optimizasyon, Teknobilim 2023: Optimizasyon Modelleme ve Yapay Zeka Optimizasyon Algoritmaları, Efe Akademi, İstanbul, (2023).
  • R.V. Rao, V. J. Savsani and D. P. Vakharia, Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Computer-Aided Design, Vol.43, pp.303-315 (2011).
  • K. Ömeroğlu, Lineer Olmayan Denklemler ve Geogebra Uygulamaları, Recep Tayyip Erdoğan Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, (2019).

PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS

Yıl 2025, Cilt: 8 Sayı: 1, 52 - 69, 31.01.2025
https://doi.org/10.33773/jum.1551816

Öz

Bu çalışma iki ana hedefe odaklanmaktadır. İlk olarak, matematiksel tabanlı sabit nokta iterasyon yöntemi ile metasezgisel öğretme-öğrenme tabanlı optimizasyon yöntemi arasındaki benzerlikler ve farklılıklar sunulmuştur. İkinci olarak, bu iki yöntemin karmaşık bir doğrusal denklem sisteminin çözümünü bulmadaki performansı karşılaştırılmaktadır. Bu sayede diğer araştırmacılar, daha önce yazarlar tarafından sırasıyla [2] ve [3]'te tartışılan sonuçlar arasında bir karşılaştırma yapabilecek ve gelecekteki araştırmalarında bu sonuçları kullanarak gerekli optimizasyon yöntemini seçme konusunda fikir sahibi olabileceklerdir.

Kaynakça

  • R. P. Chapra, S.C. Canale, Numerical Methods for Engineers, McGraw-Hill Higher Education, New York, (2002).
  • B. Köse, B. Demirtürk, and Ş. Konca, Finding Solutions of Nonlinear Equation Systems with Newton Raphson and Red Fox Methods, 6th International Graduate Studies Congress-IGSCONG 2024, June 5-8, 2024.
  • B. Demirtürk, B. Köse, Ş. Konca, Finding the Solution of a System of Nonlinear Equations with Sine Cosine and Particle Swarm Optimization Algorithms, 6th International Istanbul Modern Scientific Research Congress, 5-7 July 2024, Istanbul, (2024).
  • T. Gemechu, S. Thota, On New Root Finding Algorithm for Solving Nonlinear Transcendental Equations, International Journal of Chemistry, Mathematics and Physics (IJCMP), Vol.4, No.2, pp.18-24 (2020).
  • T. Gemechu, Root finding for nonlinear equations, Mathematical Theory and Modeling, Vol.8, No.7, 10 pages, (2018).
  • V. Y. Semenov, A Method to Find all the Roots of the System of Nonlinear Algebraic Equations Based on the Krawczyk Operator, Cybernetic and Systems Analysis, Vol.51, No.5, pp.819-825 (2015).
  • J. M. Ortega, W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, (1970).
  • C. T. Kelley, Iterative methods for linear and nonlinear equations, Society for Industrial and Applied Mathematics, (1995).
  • J. F. Traub, Iterative Methods for the Solution of Equations; American Mathematical Soc.: Washington, WA, USA, (1982).
  • C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of Computation, Vol.19, pp.577-593 (1965).
  • B. Köse, F. Kaya, Öğretme ve Öğrenme Tabanlı Optimizasyon, Teknobilim 2023: Optimizasyon Modelleme ve Yapay Zeka Optimizasyon Algoritmaları, Efe Akademi, İstanbul, (2023).
  • R.V. Rao, V. J. Savsani and D. P. Vakharia, Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Computer-Aided Design, Vol.43, pp.303-315 (2011).
  • K. Ömeroğlu, Lineer Olmayan Denklemler ve Geogebra Uygulamaları, Recep Tayyip Erdoğan Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, (2019).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Bahar Demirtürk 0000-0002-5911-5190

Bayram Köse 0000-0003-0256-5921

Şükran Konca 0000-0003-4019-958X

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 17 Eylül 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Demirtürk, B., Köse, B., & Konca, Ş. (2025). PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS. Journal of Universal Mathematics, 8(1), 52-69. https://doi.org/10.33773/jum.1551816
AMA Demirtürk B, Köse B, Konca Ş. PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS. JUM. Ocak 2025;8(1):52-69. doi:10.33773/jum.1551816
Chicago Demirtürk, Bahar, Bayram Köse, ve Şükran Konca. “PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS”. Journal of Universal Mathematics 8, sy. 1 (Ocak 2025): 52-69. https://doi.org/10.33773/jum.1551816.
EndNote Demirtürk B, Köse B, Konca Ş (01 Ocak 2025) PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS. Journal of Universal Mathematics 8 1 52–69.
IEEE B. Demirtürk, B. Köse, ve Ş. Konca, “PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS”, JUM, c. 8, sy. 1, ss. 52–69, 2025, doi: 10.33773/jum.1551816.
ISNAD Demirtürk, Bahar vd. “PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS”. Journal of Universal Mathematics 8/1 (Ocak 2025), 52-69. https://doi.org/10.33773/jum.1551816.
JAMA Demirtürk B, Köse B, Konca Ş. PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS. JUM. 2025;8:52–69.
MLA Demirtürk, Bahar vd. “PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS”. Journal of Universal Mathematics, c. 8, sy. 1, 2025, ss. 52-69, doi:10.33773/jum.1551816.
Vancouver Demirtürk B, Köse B, Konca Ş. PERFORMANCE COMPARISON OF FIXED-POINT ITERATION METHOD AND TEACHING-LEARNING BASED OPTIMISATION: A STUDY ON NONLINEAR EQUATION SYSTEMS. JUM. 2025;8(1):52-69.