Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY

Yıl 2025, Cilt: 8 Sayı: 2, 70 - 84, 19.10.2025
https://doi.org/10.33773/jum.1725478

Öz

A normal -entropy measure for intuitionistic fuzzy sets is proposed by using normalized Hamming distance. The operators〖 E〗_(α,β), Z_(α,β)^ω and Z_(α,β)^(ω,θ)are examined separately under obtained -entropy and it is shown that the fuzzification of that operators are equal under this -entropy.

Kaynakça

  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1), 87–96.
  • Atanassov, K. T. (2012). On intuitionistic fuzzy sets theory. Springer.
  • Çuvalcıoğlu, G. (2007). Some properties of Eα,β operator. Advanced Studies on Contemporary Mathematics, 14 (2), 305–309.
  • Çuvalcıoğlu, G. (2010). Expand the modal operator diagram with Zω α,β. Journal of the Jangjeon Mathematical Society, 13, 403–412.
  • Çuvalcıoğlu, G. (2013). On the diagram of one type modal operators on intuitionistic fuzzy sets, last expanding with Zω,θ α,β. Iranian Journal of Fuzzy Systems, 10 (1), 89–106.
  • Ebanks, B. R. (1983). On measure of fuzziness and their representations. Journal of Mathematical Analysis and Applications, 94 (1), 24–37.
  • Fan, J.-L., & Ma, Y. L. (2001). On some properties of distance measure. Fuzzy Sets and Systems, 117, 355–361.
  • Fan, J.-L., & Ma, Y. L. (2002). Some new entropy formulas. Fuzzy Sets and Systems, 128, 277–284.
  • Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets. Academic Press.
  • Kosko, B. (1992). Neural networks and fuzzy systems. Prentice-Hall.
  • Liu, X. C. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems, 52 (3), 305–318.
  • Szmidt, E., & Baldwin, J. (2003). New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on Intuitionistic Fuzzy Sets, 9 (3), 60–76.
  • Szmidt, E., & Kacprzyk, J. (2005). New measures of entropy for intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 11 (2), 12–20.
  • Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118 (3), 467–477.
  • Yager, R. R. (1979). On measure of fuzziness and negation, Part 1: Membership in the unit interval. International Journal of General Systems, 5, 221–229.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. 84

YENİ TANIMLANMIŞ BULANIK BULUT ENTROPİSİNE GÖRE E(α,β), Z(α,β,ω) ve Z(α,β,ω,θ) BULANIK BULUT MODAL OPERATÖRLERİNİN EŞİTLİĞİ

Yıl 2025, Cilt: 8 Sayı: 2, 70 - 84, 19.10.2025
https://doi.org/10.33773/jum.1725478

Öz

Normalleştirilmiş Hamming uzaklığı kullanılarak sezgisel bulanık kümeler için normal bir -entropi ölçüsü önerilmiştir. Operatörler〖 E〗_(α,β), Z_(α,β)^ω ve Z_(α,β)^(ω,θ) elde edilen -entropi altında ayrı ayrı incelenmiş ve bu operatörlerin bulanıklaşmasının bu -entropi altında eşit olduğu gösterilmiştir.

Kaynakça

  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1), 87–96.
  • Atanassov, K. T. (2012). On intuitionistic fuzzy sets theory. Springer.
  • Çuvalcıoğlu, G. (2007). Some properties of Eα,β operator. Advanced Studies on Contemporary Mathematics, 14 (2), 305–309.
  • Çuvalcıoğlu, G. (2010). Expand the modal operator diagram with Zω α,β. Journal of the Jangjeon Mathematical Society, 13, 403–412.
  • Çuvalcıoğlu, G. (2013). On the diagram of one type modal operators on intuitionistic fuzzy sets, last expanding with Zω,θ α,β. Iranian Journal of Fuzzy Systems, 10 (1), 89–106.
  • Ebanks, B. R. (1983). On measure of fuzziness and their representations. Journal of Mathematical Analysis and Applications, 94 (1), 24–37.
  • Fan, J.-L., & Ma, Y. L. (2001). On some properties of distance measure. Fuzzy Sets and Systems, 117, 355–361.
  • Fan, J.-L., & Ma, Y. L. (2002). Some new entropy formulas. Fuzzy Sets and Systems, 128, 277–284.
  • Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets. Academic Press.
  • Kosko, B. (1992). Neural networks and fuzzy systems. Prentice-Hall.
  • Liu, X. C. (1992). Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems, 52 (3), 305–318.
  • Szmidt, E., & Baldwin, J. (2003). New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on Intuitionistic Fuzzy Sets, 9 (3), 60–76.
  • Szmidt, E., & Kacprzyk, J. (2005). New measures of entropy for intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 11 (2), 12–20.
  • Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118 (3), 467–477.
  • Yager, R. R. (1979). On measure of fuzziness and negation, Part 1: Membership in the unit interval. International Journal of General Systems, 5, 221–229.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. 84
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi, Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Arif Bal 0000-0003-4386-7416

Sinem Tarsuslu 0000-0001-9192-7001

Dilara Gündoğdu 0000-0003-4146-8737

Gökhan Çuvalcıoğlu 0000-0001-5451-3336

Yayımlanma Tarihi 19 Ekim 2025
Gönderilme Tarihi 24 Haziran 2025
Kabul Tarihi 15 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Bal, A., Tarsuslu, S., Gündoğdu, D., Çuvalcıoğlu, G. (2025). THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY. Journal of Universal Mathematics, 8(2), 70-84. https://doi.org/10.33773/jum.1725478
AMA Bal A, Tarsuslu S, Gündoğdu D, Çuvalcıoğlu G. THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY. JUM. Ekim 2025;8(2):70-84. doi:10.33773/jum.1725478
Chicago Bal, Arif, Sinem Tarsuslu, Dilara Gündoğdu, ve Gökhan Çuvalcıoğlu. “THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY”. Journal of Universal Mathematics 8, sy. 2 (Ekim 2025): 70-84. https://doi.org/10.33773/jum.1725478.
EndNote Bal A, Tarsuslu S, Gündoğdu D, Çuvalcıoğlu G (01 Ekim 2025) THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY. Journal of Universal Mathematics 8 2 70–84.
IEEE A. Bal, S. Tarsuslu, D. Gündoğdu, ve G. Çuvalcıoğlu, “THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY”, JUM, c. 8, sy. 2, ss. 70–84, 2025, doi: 10.33773/jum.1725478.
ISNAD Bal, Arif vd. “THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY”. Journal of Universal Mathematics 8/2 (Ekim2025), 70-84. https://doi.org/10.33773/jum.1725478.
JAMA Bal A, Tarsuslu S, Gündoğdu D, Çuvalcıoğlu G. THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY. JUM. 2025;8:70–84.
MLA Bal, Arif vd. “THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY”. Journal of Universal Mathematics, c. 8, sy. 2, 2025, ss. 70-84, doi:10.33773/jum.1725478.
Vancouver Bal A, Tarsuslu S, Gündoğdu D, Çuvalcıoğlu G. THE EQUALITY OF INTUITIONİSTİC FUZZY MODAL OPERATORS E(α,β), Z(α,β,ω) and Z(α,β,ω,θ) ACCORDINGLY NEW DEFINED INTUITIONISTIC FUZZY ENTROPY. JUM. 2025;8(2):70-84.