Araştırma Makalesi
BibTex RIS Kaynak Göster

A study on Kenmotsu Ricci soliton manifolds

Yıl 2025, Cilt: 8 Sayı: 2, 150 - 159, 19.10.2025
https://doi.org/10.33773/jum.1804823

Öz

In this paper, we study Ricci solitons on Kenmotsu manifolds with respect to generalized Tanaka-Webster connection. We obtain some results on a type of Ricci solitons related to potential vector field under certain curvature conditions. Also, we use the results on the Kenmotsu manifolds with respect to generalized Tanaka-Webster connection in the literature and we classify Ricci solitons with special conditions.

Kaynakça

  • Hamilton, R. (1988). The Ricci flow on surfaces. Contemporary Mathematics, 71, 237–261.
  • Hamilton, R. (1995). The formation of singularities in the Ricci flow. Surveys in Differential Geometry, 2, 7–136.
  • Sharma, R. (2008). Certain results on K-contact and (κ, μ)-contact manifolds. Journal of Geometry, 89, 138–147.
  • Cho, J. T. (2013). Almost contact 3-manifolds and Ricci solitons. International Journal of Geometric Methods in Modern Physics, 10(1), 1220022.
  • Cho, J. T., & Sharma, R. (2010). Contact geometry and Ricci solitons. International Journal of Geometric Methods in Modern Physics, 7(6), 951–960.
  • Crasmareanu, M. (2012). Parallel tensors and Ricci solitons in N(κ)-quasi Einstein manifolds. Indian Journal of Pure and Applied Mathematics, 43, 359–369.
  • Ghosh, A., & Sharma, R. (2012). K-contact metrics as Ricci solitons. Beiträge zur Algebra und Geometrie, 53, 25–30.
  • Ghosh, A., & Sharma, R. (2013). Sasakian metric as a Ricci soliton and related results. Journal of Geometry and Physics, 75, 1–6.
  • Ghosh, A., & Patra, D. S. (2018). The k-almost Ricci solitons and contact geometry. Journal of the Korean Mathematical Society, 55(1), 161–174.
  • Venkatesha, V., & Aruna Kumara, H. (2019). Ricci soliton and geometrical structures in a perfect fluid spacetime with torse-forming vector field. Afrika Matematika, 30, 725–736.
  • Tripathi, M. M. (2008). Ricci solitons on contact manifolds. arXiv preprint arXiv:0801.4222.
  • Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds. Tohoku Mathematical Journal, 24, 93–103.
  • Pitiş, G. (2007). Geometry of Kenmotsu Manifolds. Transilvania University Press.
  • Ghosh, A. (2011). Kenmotsu 3-metric as a Ricci soliton. Chaos, Solitons and Fractals, 44, 647–650.
  • Ghosh, A. (2013). An η-Einstein Kenmotsu metric as a Ricci soliton. Publications Mathematicae Debrecen, 82(3–4), 591–598.
  • Ghosh, A. (2019). Ricci solitons and Ricci almost solitons within the framework of Kenmotsu manifolds. Carpathian Mathematical Publications, 11(1), 59–69.
  • Ayar, G., & Yıldırım, M. (2019). Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds. Facta Universitatis, Series: Mathematics and Informatics, 34(3), 503–510.
  • Hui, S. K., Prasad, R., & Chakraborty, D. (2017). Ricci solitons on Kenmotsu manifolds with respect to quarter-symmetric non-metric ϕ-connection. Ganita, 67, 195–204.
  • Nagaraja, H. G., & Kiran Kumar, D. L. (2019). Ricci solitons in Kenmotsu manifolds under generalized D-conformal deformation. Lobachevskii Journal of Mathematics, 40(2), 195–200.
  • Bagewadi, C. S., Ingalahalli, G., & Ashoka, S. R. (2013). A study on Ricci solitons in Kenmotsu manifolds. International Scholarly Research Notices, 2013, Article ID 243256.
  • Nagaraja, H. G., & Venu, K. (2016). Ricci solution in Kenmotsu manifolds. Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Ayar, G., & Demirhan, D. (2019). Ricci solitons on nearly Kenmotsu manifolds with semi-symmetric metric connection. Journal of Engineering Technology and Applied Sciences, 4(3), 131–140.
  • Tanaka, N. (1976). On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japanese Journal of Mathematics, New Series, 2(1), 131–190.
  • Webster, S. M. (1978). Pseudo-Hermitian structures on a real hypersurface. Journal of Differential Geometry, 13(1), 25–41.
  • Tanno, S. (1989). Variational problems on contact Riemannian manifolds. Transactions of the American Mathematical Society, 314(1), 349–379.
  • Ünal, İ., & Altın, M. (2021). N(κ)-contact metric manifolds with generalized Tanaka–Webster connection. Filomat, 35(4), 1383–1392.
  • De, U. C., & Ghosh, G. (2016). On generalized Tanaka–Webster connection in Sasakian manifolds. Bulletin of the Transilvania University of Braşov, 9(2), 13–24.
  • Montano, B. C. (2010). Some remarks on the generalized Tanaka–Webster connection of a contact metric manifold. Rocky Mountain Journal of Mathematics, 40, 1009–1037.
  • Kazan, A., & Karadağ, H. B. (2018). Trans-Sasakian manifolds with respect to generalized Tanaka–Webster connection. Honam Mathematical Journal, 40(3), 487–508.
  • Mocanu, R. (2009). Gray curvature conditions and the Tanaka–Webster connection. In Differential Geometry: Proceedings of the VIII International Colloquium, Santiago de Compostela, Spain, 7–11 July 2008 (p. 291). World Scientific.
  • Perktaş, S. Y., Acet, B. E., & Kılıç, E. (2013). Kenmotsu manifolds with generalized Tanaka–Webster connection. Adıyaman University Journal of Science, 3(2), 79–93.
  • Ghosh, G., & De, U. C. (2017). Kenmotsu manifolds with generalized Tanaka–Webster connection. Publications de l’Institut Mathématique, 102(116), 221–230.
  • Prakasha, D. G., & Hadimani, B. S. (2018). On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka–Webster connection. Miskolc Mathematical Notes, 19(1), 491–503.
  • Kiran Kumar, D. L., Nagaraja, H. G., & Kumari, D. (2019). Concircular curvature tensor of Kenmotsu manifolds admitting generalized Tanaka–Webster connection. Journal of Mathematics and Computer Science, 9(4), 447–462.
  • Blair, D. E. (2010). Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser.
  • Ahsan, Z. (2015). Tensors, Mathematics of Differential Geometry and Relativity. PHI Learning Private Limited.

Kenmotsu Ricci Soliton Manifoldları Üzerine Bir Çalışma

Yıl 2025, Cilt: 8 Sayı: 2, 150 - 159, 19.10.2025
https://doi.org/10.33773/jum.1804823

Öz

Bu çalışmada, Kenmotsu manifoldları üzerinde Ricci solitonlarını genelleştirilmiş Tanaka-Webster bağlantısına göre inceliyoruz. Belirli eğrilik koşulları altında potansiyel vektör alanı ile ilgili bir Ricci soliton türü hakkında bazı sonuçlar elde ettik. Ayrıca, literatürdeki genelleştirilmiş Tanaka-Webster bağlantısına göre Kenmotsu manifoldları ile ilgili sonuçları kullanıyoruz ve Ricci solitonlarını özel koşullarla sınıflandırıyoruz.

Kaynakça

  • Hamilton, R. (1988). The Ricci flow on surfaces. Contemporary Mathematics, 71, 237–261.
  • Hamilton, R. (1995). The formation of singularities in the Ricci flow. Surveys in Differential Geometry, 2, 7–136.
  • Sharma, R. (2008). Certain results on K-contact and (κ, μ)-contact manifolds. Journal of Geometry, 89, 138–147.
  • Cho, J. T. (2013). Almost contact 3-manifolds and Ricci solitons. International Journal of Geometric Methods in Modern Physics, 10(1), 1220022.
  • Cho, J. T., & Sharma, R. (2010). Contact geometry and Ricci solitons. International Journal of Geometric Methods in Modern Physics, 7(6), 951–960.
  • Crasmareanu, M. (2012). Parallel tensors and Ricci solitons in N(κ)-quasi Einstein manifolds. Indian Journal of Pure and Applied Mathematics, 43, 359–369.
  • Ghosh, A., & Sharma, R. (2012). K-contact metrics as Ricci solitons. Beiträge zur Algebra und Geometrie, 53, 25–30.
  • Ghosh, A., & Sharma, R. (2013). Sasakian metric as a Ricci soliton and related results. Journal of Geometry and Physics, 75, 1–6.
  • Ghosh, A., & Patra, D. S. (2018). The k-almost Ricci solitons and contact geometry. Journal of the Korean Mathematical Society, 55(1), 161–174.
  • Venkatesha, V., & Aruna Kumara, H. (2019). Ricci soliton and geometrical structures in a perfect fluid spacetime with torse-forming vector field. Afrika Matematika, 30, 725–736.
  • Tripathi, M. M. (2008). Ricci solitons on contact manifolds. arXiv preprint arXiv:0801.4222.
  • Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds. Tohoku Mathematical Journal, 24, 93–103.
  • Pitiş, G. (2007). Geometry of Kenmotsu Manifolds. Transilvania University Press.
  • Ghosh, A. (2011). Kenmotsu 3-metric as a Ricci soliton. Chaos, Solitons and Fractals, 44, 647–650.
  • Ghosh, A. (2013). An η-Einstein Kenmotsu metric as a Ricci soliton. Publications Mathematicae Debrecen, 82(3–4), 591–598.
  • Ghosh, A. (2019). Ricci solitons and Ricci almost solitons within the framework of Kenmotsu manifolds. Carpathian Mathematical Publications, 11(1), 59–69.
  • Ayar, G., & Yıldırım, M. (2019). Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds. Facta Universitatis, Series: Mathematics and Informatics, 34(3), 503–510.
  • Hui, S. K., Prasad, R., & Chakraborty, D. (2017). Ricci solitons on Kenmotsu manifolds with respect to quarter-symmetric non-metric ϕ-connection. Ganita, 67, 195–204.
  • Nagaraja, H. G., & Kiran Kumar, D. L. (2019). Ricci solitons in Kenmotsu manifolds under generalized D-conformal deformation. Lobachevskii Journal of Mathematics, 40(2), 195–200.
  • Bagewadi, C. S., Ingalahalli, G., & Ashoka, S. R. (2013). A study on Ricci solitons in Kenmotsu manifolds. International Scholarly Research Notices, 2013, Article ID 243256.
  • Nagaraja, H. G., & Venu, K. (2016). Ricci solution in Kenmotsu manifolds. Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Ayar, G., & Demirhan, D. (2019). Ricci solitons on nearly Kenmotsu manifolds with semi-symmetric metric connection. Journal of Engineering Technology and Applied Sciences, 4(3), 131–140.
  • Tanaka, N. (1976). On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japanese Journal of Mathematics, New Series, 2(1), 131–190.
  • Webster, S. M. (1978). Pseudo-Hermitian structures on a real hypersurface. Journal of Differential Geometry, 13(1), 25–41.
  • Tanno, S. (1989). Variational problems on contact Riemannian manifolds. Transactions of the American Mathematical Society, 314(1), 349–379.
  • Ünal, İ., & Altın, M. (2021). N(κ)-contact metric manifolds with generalized Tanaka–Webster connection. Filomat, 35(4), 1383–1392.
  • De, U. C., & Ghosh, G. (2016). On generalized Tanaka–Webster connection in Sasakian manifolds. Bulletin of the Transilvania University of Braşov, 9(2), 13–24.
  • Montano, B. C. (2010). Some remarks on the generalized Tanaka–Webster connection of a contact metric manifold. Rocky Mountain Journal of Mathematics, 40, 1009–1037.
  • Kazan, A., & Karadağ, H. B. (2018). Trans-Sasakian manifolds with respect to generalized Tanaka–Webster connection. Honam Mathematical Journal, 40(3), 487–508.
  • Mocanu, R. (2009). Gray curvature conditions and the Tanaka–Webster connection. In Differential Geometry: Proceedings of the VIII International Colloquium, Santiago de Compostela, Spain, 7–11 July 2008 (p. 291). World Scientific.
  • Perktaş, S. Y., Acet, B. E., & Kılıç, E. (2013). Kenmotsu manifolds with generalized Tanaka–Webster connection. Adıyaman University Journal of Science, 3(2), 79–93.
  • Ghosh, G., & De, U. C. (2017). Kenmotsu manifolds with generalized Tanaka–Webster connection. Publications de l’Institut Mathématique, 102(116), 221–230.
  • Prakasha, D. G., & Hadimani, B. S. (2018). On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka–Webster connection. Miskolc Mathematical Notes, 19(1), 491–503.
  • Kiran Kumar, D. L., Nagaraja, H. G., & Kumari, D. (2019). Concircular curvature tensor of Kenmotsu manifolds admitting generalized Tanaka–Webster connection. Journal of Mathematics and Computer Science, 9(4), 447–462.
  • Blair, D. E. (2010). Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser.
  • Ahsan, Z. (2015). Tensors, Mathematics of Differential Geometry and Relativity. PHI Learning Private Limited.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

İnan Ünal 0000-0003-1318-9685

Yayımlanma Tarihi 19 Ekim 2025
Gönderilme Tarihi 16 Ekim 2025
Kabul Tarihi 19 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Ünal, İ. (2025). A study on Kenmotsu Ricci soliton manifolds. Journal of Universal Mathematics, 8(2), 150-159. https://doi.org/10.33773/jum.1804823
AMA Ünal İ. A study on Kenmotsu Ricci soliton manifolds. JUM. Ekim 2025;8(2):150-159. doi:10.33773/jum.1804823
Chicago Ünal, İnan. “A study on Kenmotsu Ricci soliton manifolds”. Journal of Universal Mathematics 8, sy. 2 (Ekim 2025): 150-59. https://doi.org/10.33773/jum.1804823.
EndNote Ünal İ (01 Ekim 2025) A study on Kenmotsu Ricci soliton manifolds. Journal of Universal Mathematics 8 2 150–159.
IEEE İ. Ünal, “A study on Kenmotsu Ricci soliton manifolds”, JUM, c. 8, sy. 2, ss. 150–159, 2025, doi: 10.33773/jum.1804823.
ISNAD Ünal, İnan. “A study on Kenmotsu Ricci soliton manifolds”. Journal of Universal Mathematics 8/2 (Ekim2025), 150-159. https://doi.org/10.33773/jum.1804823.
JAMA Ünal İ. A study on Kenmotsu Ricci soliton manifolds. JUM. 2025;8:150–159.
MLA Ünal, İnan. “A study on Kenmotsu Ricci soliton manifolds”. Journal of Universal Mathematics, c. 8, sy. 2, 2025, ss. 150-9, doi:10.33773/jum.1804823.
Vancouver Ünal İ. A study on Kenmotsu Ricci soliton manifolds. JUM. 2025;8(2):150-9.