Araştırma Makalesi
BibTex RIS Kaynak Göster

Monte Carlo FLUKA Simülasyonları Kullanılarak Hidrotermal Olarak Sentezlenen CuO Nanopartiküllerinin Radyasyon Kalkanı Özelliklerinin Değerlendirilmesi

Yıl 2025, Cilt: 15 Sayı: 3, 120 - 130, 19.11.2025
https://doi.org/10.7212/karaelmasfen.1752771

Öz

Bakır oksit nanoparçacıkları (CuO NP), 105 °C’de hidrotermal çöktürme yöntemiyle sentezlendi. CuO nanoparçacıklarının yapısı, X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) ile karakterize edildi. Optik özellikleri ise UV-vis spektrofotometresi kullanılarak incelendi. Tüm nanoparçacıklar için XRD ölçümleri, monoklinik CuO fazının oluştuğunu ortaya koydu. Nanopartiküllerin direkt optik bant genişliği ve Urbach boşluk genişliği sırasıyla 2,88 eV ve 0,44 eV olarak bulundu. Optik ölçümlere dayanarak kırılma indisi (n), soğurma katsayısı (k) ve dielektrik sabitinin gerçek (ε1) ve sanal (ε2) bileşenleri gibi optik parametreler hesaplandı. 550 nm dalga boyunda, n ve k değerleri sırasıyla 2,75 ve 0,00024 olarak bulunurken, bu değerlere karşılık gelen ε1 ve ε2 değerleri 7,570 ve 0,0013 olarak belirlendi. Ayrıca, farklı enerji seviyelerinde fotonların CuO NP’lerle etkileşimi FLUKA programı ile simüle edildi. Malzemedeki enerji birikimi, çalışılan malzemenin radyasyon zırhlama özelliklerini değerlendirmek için önemli bilgiler sağladı.

Proje Numarası

None

Kaynakça

  • Agar, O., Sayyed, MI., Akman, F., Tekin, HO., Kaçal, MR. 2019. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nuclear Engineering and Technology, 51(3), 853-859. https://doi.org/10.1016/j.net.2018.12.014
  • Ali, AM., Issa, SA., Ahmed, MR., Saddeek, YB., Zaid, MHM., Sayed, M., Somaily, H. H., Tekin, HO., Sidek, HAA., Matori, KA., Zakaly, HM. 2020. Promising applicable heterometallic Al2O3/PbO2 nanoparticles in shielding properties. Journal of Materials Research and Technology, 9(6), 13956-13962. https://doi.org/10.1016/j.jmrt.2020.09.125
  • Alzahrani, JS., Alrowaili, ZA., Sriwunkum, C., Al-Buriahi, MS. 2024. Radiation and nuclear shielding performance of tellurite glass system containing Li2O and MoO3: XCOM and FLUKA Monte Carlo. Journal of Radiation Research and Applied Sciences, 17(2), 100923. https://doi.org/10.1016/j.jrras.2024.100923
  • Amri, A., Hasan, K., Taha, H., Rahman, MM., Herman, S., Awaltanova, E., Wantono, I., Kabir, H., Yin, CY., Ibrahim, K., Bahri, S., Frimayanti, N., Hossain, MA., Jiang, Z. T. 2019. Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method. Ceramics International, 45(10), 12888-12894. https://doi.org/10.1016/j.ceramint.2019.03.213
  • Ballarini, F., Battistoni, G., Campanella, M., Carboni, M., Cerutti, F., Empl, A., Fassò, A., Ferrari, A., Gadioli, E., Garzelli, MV. 2006. The FLUKA code: an overview. In Journal of Physics: Conference Series, IOP Publishing, 41, 151–160. https://doi.org/10.1088/1742-6596/41/1/014
  • Basith, NM., Vijaya, JJ., Kennedy, LJ., Bououdina, M. 2013. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, 193-199. https://doi.org/10.1016/j.physe.2013.05.009
  • Chen, Y., Zhang, L., Zhang, H., Zhong, K., Zhao, G., Chen, G., Lin Y, Chen S., Huang, Z. 2018. Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceramics International, 44(1), 1134-1141. https://doi.org/10.1016/j.ceramint.2017.10.070
  • Dridi, W., Alsulami, RA., Albarqi, MM., Alsufyani, SJ., Hosni, F. 2024. Radiation shielding features of Na2O–P2O5 glasses doped with MnO experimentally and using FLUKA and Phy-X. Journal of Radiation Research and Applied Sciences, 17(1), 100805. https://doi.org/10.1016/j.jrras.2023.100805
  • El-Taher, A., Zakaly, HM., Allam, EA., El-Sharkawy, RM., Al Meshari, M., Soliman, A. M., ... Mahmoud, ME. 2025. Fluka and microshield simulation assessment of nuclear radiation attenuation by binary nanocomposites. Radiation Physics and Chemistry, 229, 112409. https://doi.org/10.1016/j.radphyschem.2024.112409
  • Ferrari, A., Sala, PR., Fasso, A., Ranft, J. 2005. FLUKA: A Multi-Particle Transport Code. CERN-library, 55(99), 100. https://cds.cern.ch/record/898301
  • Hubbell, JH. 1969. Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV, Natl. Stand. Ref. Data Ser. 29.
  • Hubbell, JH., Seltzer, SM. 2004. Cross section data for electron–positron pair production by photons: a status report. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, 1-9. https://doi.org/10.1016/S0168-583X(03)01524-6
  • Mansy, MS., Lasheen, YF., Breky, MM., Selim, Y. 2021. Experimental and theoretical investigation of Pb–Sb alloys as a gamma-radiation shielding material. Radiation Physics and Chemistry, 183, 109416. https://doi.org/10.1016/j.radphyschem.2021.109416
  • Meulepas, JM., Hauptmann, M., Lubin, JH., Shuryak, I., Brenner, DJ. 2018. Is there unmeasured indication bias in radiation-related cancer risk estimates from studies of computed tomography. Radiat. Res., 189(2), 128-135. https://doi.org/10.1667/RR14807.1
  • Moss, TS., Burrell, GJ., Ellis, B. 1973. Semiconductor Opto-electronics. John Wiley & Sons, New York. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., Bouffler, S. 2009. Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer., 9(8): 596–604. https://doi.org/10.1038/nrc2677
  • Nandhakumar, E., Priya, P., Selvakumar, P., Vaishnavi, E., Sasikumar, A., Senthilkumar, N. 2019. One step hydrothermal green approach of CuO/Ag nanocomposites: Analysis of structural, biological activities. Mater. Res. Express., 6(9): 0950g4. https://doi.org/10.1088/2053-1591/ab2eb9
  • Nitta, R., Kubota, Y., Kishi, T., Matsushita, N. 2022. Fabrication of nanostructured CuO NPs with controllable optical band gaps using a mist spin spray technique at 90 °C. Thin Solid Films, 762: 139555. https://doi.org/10.1016/j.tsf.2022.139555
  • Perkowitz, S. 1993. Optical Characterizations of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy. Academic Press, San Diego.
  • Rai, RS. 2024. Carbon fiber fabrics functionalized with monoclinic CuO nanostructures using seed-assisted hydrothermal growth treatment. Ceram. Int. 50(21): 44635–44647. https://doi.org/10.1016/j.ceramint.2024.08.311
  • Rehman, SU., Khan, S., Iqbal, Z., Bilal, M., Alkhybari, E., Alhailiy, A., ... Alotaibi, S. 2025. Simulation of shielding parameters of Gd–Pb binary alloys using FLUKA code and Phy-x/PSD platform. Radiation Physics and Chemistry, 230, 112582. https://doi.org/10.1016/j.radphyschem.2025.112582
  • Sagadevan, S., Pal, K., Chowdhury, ZZ. 2017. Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. J. Mater. Sci. Mater. Electron., 28(17): 12591–12597. https://doi.org/10.1007/s10854-017-7083-3
  • Sayyed, MI., Lakshminarayana, G., Dong, MG., Ersundu, MÇ., Ersundu, AE., Kityk, IV. 2018. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses. Radiation Physics and Chemistry, 145, 26–33. https://doi.org/10.1016/j.radphyschem.2017.12.010
  • Sayyed, MI., Rashad, M., Elsafi, M., Maghrbi, Y. 2025. The impact of CuO in modifying the radiation shielding performance of PbO–BaO–CaO–B2O3–CuO: An experimental approach. Radiation Physics and Chemistry, 226, 112271. https://doi.org/10.1016/j.radphyschem.2024.112271
  • Stokes, AR., Wilson, AJC. 1944. The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc., 56(3): 174.
  • Şakar, E., Özpolat, ÖF., Alım, B., Sayyed, MI., Kurudirek, M. 2020. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tauc, J. 1974. Amorphous and Liquid Semiconductors. Plenum Press, New York.
  • Wooten, F. 1972. Optical Properties of Solids. Academic Press, New York.

Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations

Yıl 2025, Cilt: 15 Sayı: 3, 120 - 130, 19.11.2025
https://doi.org/10.7212/karaelmasfen.1752771

Öz

Copper oxide nanoparticles (CuO NPs) were synthesized at 105 °C via a hydrothermal deposition technique. The CuO nanoparticle structure was characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical properties of the nanoparticles were examined via a UV‒vis spectrophotometer. For all the nanoparticles, the XRD measurements revealed the monoclinic CuO phase. The direct optical band and Urbach gap width of the nanoparticles were 2.88 eV and 0.44 eV, respectively. On the basis of optical measurements, optical parameters such as the refractive index (n), extinction coefficient (k), and real (ε1) and imaginary (ε2) components of the dielectric constant were calculated. At a wavelength of 550 nm, the optical constants n and k were found to be 2.75 and 0.00024, respectively, corresponding to dielectric real and imaginary constants of 7.570 and 0.0013. Additionally, photon interactions with CuO NPs at various energy levels were simulated via the FLUKA program. The energy deposition in the material provided valuable information for assessing the radiation shielding capabilities of the investigated material.

Etik Beyan

None

Proje Numarası

None

Teşekkür

None

Kaynakça

  • Agar, O., Sayyed, MI., Akman, F., Tekin, HO., Kaçal, MR. 2019. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nuclear Engineering and Technology, 51(3), 853-859. https://doi.org/10.1016/j.net.2018.12.014
  • Ali, AM., Issa, SA., Ahmed, MR., Saddeek, YB., Zaid, MHM., Sayed, M., Somaily, H. H., Tekin, HO., Sidek, HAA., Matori, KA., Zakaly, HM. 2020. Promising applicable heterometallic Al2O3/PbO2 nanoparticles in shielding properties. Journal of Materials Research and Technology, 9(6), 13956-13962. https://doi.org/10.1016/j.jmrt.2020.09.125
  • Alzahrani, JS., Alrowaili, ZA., Sriwunkum, C., Al-Buriahi, MS. 2024. Radiation and nuclear shielding performance of tellurite glass system containing Li2O and MoO3: XCOM and FLUKA Monte Carlo. Journal of Radiation Research and Applied Sciences, 17(2), 100923. https://doi.org/10.1016/j.jrras.2024.100923
  • Amri, A., Hasan, K., Taha, H., Rahman, MM., Herman, S., Awaltanova, E., Wantono, I., Kabir, H., Yin, CY., Ibrahim, K., Bahri, S., Frimayanti, N., Hossain, MA., Jiang, Z. T. 2019. Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method. Ceramics International, 45(10), 12888-12894. https://doi.org/10.1016/j.ceramint.2019.03.213
  • Ballarini, F., Battistoni, G., Campanella, M., Carboni, M., Cerutti, F., Empl, A., Fassò, A., Ferrari, A., Gadioli, E., Garzelli, MV. 2006. The FLUKA code: an overview. In Journal of Physics: Conference Series, IOP Publishing, 41, 151–160. https://doi.org/10.1088/1742-6596/41/1/014
  • Basith, NM., Vijaya, JJ., Kennedy, LJ., Bououdina, M. 2013. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, 193-199. https://doi.org/10.1016/j.physe.2013.05.009
  • Chen, Y., Zhang, L., Zhang, H., Zhong, K., Zhao, G., Chen, G., Lin Y, Chen S., Huang, Z. 2018. Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceramics International, 44(1), 1134-1141. https://doi.org/10.1016/j.ceramint.2017.10.070
  • Dridi, W., Alsulami, RA., Albarqi, MM., Alsufyani, SJ., Hosni, F. 2024. Radiation shielding features of Na2O–P2O5 glasses doped with MnO experimentally and using FLUKA and Phy-X. Journal of Radiation Research and Applied Sciences, 17(1), 100805. https://doi.org/10.1016/j.jrras.2023.100805
  • El-Taher, A., Zakaly, HM., Allam, EA., El-Sharkawy, RM., Al Meshari, M., Soliman, A. M., ... Mahmoud, ME. 2025. Fluka and microshield simulation assessment of nuclear radiation attenuation by binary nanocomposites. Radiation Physics and Chemistry, 229, 112409. https://doi.org/10.1016/j.radphyschem.2024.112409
  • Ferrari, A., Sala, PR., Fasso, A., Ranft, J. 2005. FLUKA: A Multi-Particle Transport Code. CERN-library, 55(99), 100. https://cds.cern.ch/record/898301
  • Hubbell, JH. 1969. Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV, Natl. Stand. Ref. Data Ser. 29.
  • Hubbell, JH., Seltzer, SM. 2004. Cross section data for electron–positron pair production by photons: a status report. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, 1-9. https://doi.org/10.1016/S0168-583X(03)01524-6
  • Mansy, MS., Lasheen, YF., Breky, MM., Selim, Y. 2021. Experimental and theoretical investigation of Pb–Sb alloys as a gamma-radiation shielding material. Radiation Physics and Chemistry, 183, 109416. https://doi.org/10.1016/j.radphyschem.2021.109416
  • Meulepas, JM., Hauptmann, M., Lubin, JH., Shuryak, I., Brenner, DJ. 2018. Is there unmeasured indication bias in radiation-related cancer risk estimates from studies of computed tomography. Radiat. Res., 189(2), 128-135. https://doi.org/10.1667/RR14807.1
  • Moss, TS., Burrell, GJ., Ellis, B. 1973. Semiconductor Opto-electronics. John Wiley & Sons, New York. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., Bouffler, S. 2009. Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer., 9(8): 596–604. https://doi.org/10.1038/nrc2677
  • Nandhakumar, E., Priya, P., Selvakumar, P., Vaishnavi, E., Sasikumar, A., Senthilkumar, N. 2019. One step hydrothermal green approach of CuO/Ag nanocomposites: Analysis of structural, biological activities. Mater. Res. Express., 6(9): 0950g4. https://doi.org/10.1088/2053-1591/ab2eb9
  • Nitta, R., Kubota, Y., Kishi, T., Matsushita, N. 2022. Fabrication of nanostructured CuO NPs with controllable optical band gaps using a mist spin spray technique at 90 °C. Thin Solid Films, 762: 139555. https://doi.org/10.1016/j.tsf.2022.139555
  • Perkowitz, S. 1993. Optical Characterizations of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy. Academic Press, San Diego.
  • Rai, RS. 2024. Carbon fiber fabrics functionalized with monoclinic CuO nanostructures using seed-assisted hydrothermal growth treatment. Ceram. Int. 50(21): 44635–44647. https://doi.org/10.1016/j.ceramint.2024.08.311
  • Rehman, SU., Khan, S., Iqbal, Z., Bilal, M., Alkhybari, E., Alhailiy, A., ... Alotaibi, S. 2025. Simulation of shielding parameters of Gd–Pb binary alloys using FLUKA code and Phy-x/PSD platform. Radiation Physics and Chemistry, 230, 112582. https://doi.org/10.1016/j.radphyschem.2025.112582
  • Sagadevan, S., Pal, K., Chowdhury, ZZ. 2017. Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. J. Mater. Sci. Mater. Electron., 28(17): 12591–12597. https://doi.org/10.1007/s10854-017-7083-3
  • Sayyed, MI., Lakshminarayana, G., Dong, MG., Ersundu, MÇ., Ersundu, AE., Kityk, IV. 2018. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses. Radiation Physics and Chemistry, 145, 26–33. https://doi.org/10.1016/j.radphyschem.2017.12.010
  • Sayyed, MI., Rashad, M., Elsafi, M., Maghrbi, Y. 2025. The impact of CuO in modifying the radiation shielding performance of PbO–BaO–CaO–B2O3–CuO: An experimental approach. Radiation Physics and Chemistry, 226, 112271. https://doi.org/10.1016/j.radphyschem.2024.112271
  • Stokes, AR., Wilson, AJC. 1944. The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc., 56(3): 174.
  • Şakar, E., Özpolat, ÖF., Alım, B., Sayyed, MI., Kurudirek, M. 2020. Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tauc, J. 1974. Amorphous and Liquid Semiconductors. Plenum Press, New York.
  • Wooten, F. 1972. Optical Properties of Solids. Academic Press, New York.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik ve Fiziksel Optik, Malzeme Fiziği
Bölüm Araştırma Makalesi
Yazarlar

Saniye Tekerek 0000-0003-3326-358X

Proje Numarası None
Gönderilme Tarihi 28 Temmuz 2025
Kabul Tarihi 22 Ağustos 2025
Yayımlanma Tarihi 19 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Tekerek, S. (2025). Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations. Karaelmas Fen ve Mühendislik Dergisi, 15(3), 120-130. https://doi.org/10.7212/karaelmasfen.1752771
AMA Tekerek S. Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations. Karaelmas Fen ve Mühendislik Dergisi. Kasım 2025;15(3):120-130. doi:10.7212/karaelmasfen.1752771
Chicago Tekerek, Saniye. “Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations”. Karaelmas Fen ve Mühendislik Dergisi 15, sy. 3 (Kasım 2025): 120-30. https://doi.org/10.7212/karaelmasfen.1752771.
EndNote Tekerek S (01 Kasım 2025) Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations. Karaelmas Fen ve Mühendislik Dergisi 15 3 120–130.
IEEE S. Tekerek, “Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations”, Karaelmas Fen ve Mühendislik Dergisi, c. 15, sy. 3, ss. 120–130, 2025, doi: 10.7212/karaelmasfen.1752771.
ISNAD Tekerek, Saniye. “Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations”. Karaelmas Fen ve Mühendislik Dergisi 15/3 (Kasım2025), 120-130. https://doi.org/10.7212/karaelmasfen.1752771.
JAMA Tekerek S. Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:120–130.
MLA Tekerek, Saniye. “Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations”. Karaelmas Fen ve Mühendislik Dergisi, c. 15, sy. 3, 2025, ss. 120-3, doi:10.7212/karaelmasfen.1752771.
Vancouver Tekerek S. Evaluation of Radiation Shielding Properties of Hydrothermally Synthesized CuO Nanoparticles Using Monte Carlo FLUKA Simulations. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(3):120-3.