BibTex RIS Kaynak Göster

Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri

Yıl 2019, Cilt: 9 Sayı: 1, 34 - 40, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1213

Öz

Bu çalışmada, Altun and Imdad 2009 tarafından düzgün uzaylar üzerinde verilmiş olan sıralama bağıntısını kullanarak sıralı düzgün uzaylar üzerindeki iki dönüşüm için bazı ikili çakışık ve ikili ortak sabit nokta teoremleri ispat edilmiştir

Kaynakça

  • Aamri, M., El Moutawakil, D. 2004. Common fixed point theorems for E- contractive or E-expansive maps in uniform spaces. .Acta Math. Acad. Pea. Nyir. ,20: 83-91.
  • Aamri, M., El Moutawakil, D. 2005. Weak compatibility and common fixed point theorems for A-contractive and E-expansive maps in uniform spaces. Serdica Math. J.,31, 75- 86.
  • Abbas, M., Ilic, D., Khan, MA. 2010. Coupled coincidence point and coupled common fixed point theorems in partially ordered metric spaces with w-distance. Fixed Point Theo. Appl.,Article ID:134897.
  • Agarwal, RP., O’Regan, D., Papageorgiou, NS. 2004. Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces. Appl. Anal.,83(1): 37-47.
  • Agarwal, RP., El-Gebeily, MA., O’Regan, D. 2008. Generalized contractions in partially ordered metric spaces. Appl. Anal.,87: 109-116.
  • Altun, I., Imdad, M. 2009. Some fixed point theorems on ordered uniform spaces. Filomat,23(3): 15-22.
  • Bhaskar, TG. Lakshmikantham,V. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal.,65: 1379-1393.
  • Boyd, DW., Wong, JS. 1969. On nonlinear contractions. Proc. Amer. Math. Soc.,20: 458-464.
  • Ciric, LB. 2008. Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl.,348(1): 499-507.
  • Guo, D., Lakshmikantham,V. 1987. Coupled fixed points of nonlinear operators with applications. Nonlinear Anal.,11, 623-632.
  • Lakshmikantham, V., Ciric, LB. 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal.,70: 4341-4349
  • Nieto, JJ., Lopez, RR. 2005. Contractive mapping theorems in partially ordered sets and applications to ordinary diferential equations. Order, 22: 223-239.
  • Nieto, JJ., Lopez, RR. 2007. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary diferential equations. Acta Math. Sinica, Engl. Ser.,23(12): 2205-2212.
  • Olatinwo, MO. 2008. On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces. Applied Math. E-Notes,8: 254-262.
  • Ran, ACM., Reurings, MCB. 2004. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc.,132: 1435-1443.
  • corollaries related to this fixed point and coupled fixed point theorems.
  • Turkoglu, D., Binbasioglu, D. 2011. Some fixed point theorems for Multivalued Monotone Mappings in Ordered Uniform Space. Fixed Point Theo. Appl., Article ID:186237.
  • Turkoglu, D., Binbasioglu, D. 2015. Coupled Coincidence point theorems for Compatible Mappings in Ordered Uniform Space. Miskolc Math. Not., 16(1): 527-541.
  • Turkoglu, D. 2008. Some fixed point theorems for hybrid contractions in uniform space. Taiwanese J. Math.,12(3): 807- 820.

Coupled Fixed Point Theorems for Nonlinear Contractions in Ordered Uniform Spaces

Yıl 2019, Cilt: 9 Sayı: 1, 34 - 40, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1213

Öz

In this paper, we have proved some coupled coincidence and coupled common fixed point theorems for two mappings defined on the ordered uniform spaces by using the order relation on uniform spaces presented by Altun and Imdad 2009 .

Kaynakça

  • Aamri, M., El Moutawakil, D. 2004. Common fixed point theorems for E- contractive or E-expansive maps in uniform spaces. .Acta Math. Acad. Pea. Nyir. ,20: 83-91.
  • Aamri, M., El Moutawakil, D. 2005. Weak compatibility and common fixed point theorems for A-contractive and E-expansive maps in uniform spaces. Serdica Math. J.,31, 75- 86.
  • Abbas, M., Ilic, D., Khan, MA. 2010. Coupled coincidence point and coupled common fixed point theorems in partially ordered metric spaces with w-distance. Fixed Point Theo. Appl.,Article ID:134897.
  • Agarwal, RP., O’Regan, D., Papageorgiou, NS. 2004. Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces. Appl. Anal.,83(1): 37-47.
  • Agarwal, RP., El-Gebeily, MA., O’Regan, D. 2008. Generalized contractions in partially ordered metric spaces. Appl. Anal.,87: 109-116.
  • Altun, I., Imdad, M. 2009. Some fixed point theorems on ordered uniform spaces. Filomat,23(3): 15-22.
  • Bhaskar, TG. Lakshmikantham,V. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal.,65: 1379-1393.
  • Boyd, DW., Wong, JS. 1969. On nonlinear contractions. Proc. Amer. Math. Soc.,20: 458-464.
  • Ciric, LB. 2008. Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl.,348(1): 499-507.
  • Guo, D., Lakshmikantham,V. 1987. Coupled fixed points of nonlinear operators with applications. Nonlinear Anal.,11, 623-632.
  • Lakshmikantham, V., Ciric, LB. 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal.,70: 4341-4349
  • Nieto, JJ., Lopez, RR. 2005. Contractive mapping theorems in partially ordered sets and applications to ordinary diferential equations. Order, 22: 223-239.
  • Nieto, JJ., Lopez, RR. 2007. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary diferential equations. Acta Math. Sinica, Engl. Ser.,23(12): 2205-2212.
  • Olatinwo, MO. 2008. On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces. Applied Math. E-Notes,8: 254-262.
  • Ran, ACM., Reurings, MCB. 2004. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc.,132: 1435-1443.
  • corollaries related to this fixed point and coupled fixed point theorems.
  • Turkoglu, D., Binbasioglu, D. 2011. Some fixed point theorems for Multivalued Monotone Mappings in Ordered Uniform Space. Fixed Point Theo. Appl., Article ID:186237.
  • Turkoglu, D., Binbasioglu, D. 2015. Coupled Coincidence point theorems for Compatible Mappings in Ordered Uniform Space. Miskolc Math. Not., 16(1): 527-541.
  • Turkoglu, D. 2008. Some fixed point theorems for hybrid contractions in uniform space. Taiwanese J. Math.,12(3): 807- 820.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Demet Binbaşıoğlu Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Binbaşıoğlu, D. (2019). Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri. Karaelmas Fen Ve Mühendislik Dergisi, 9(1), 34-40. https://doi.org/10.7212/zkufbd.v9i1.1213
AMA Binbaşıoğlu D. Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2019;9(1):34-40. doi:10.7212/zkufbd.v9i1.1213
Chicago Binbaşıoğlu, Demet. “Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri”. Karaelmas Fen Ve Mühendislik Dergisi 9, sy. 1 (Ocak 2019): 34-40. https://doi.org/10.7212/zkufbd.v9i1.1213.
EndNote Binbaşıoğlu D (01 Ocak 2019) Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri. Karaelmas Fen ve Mühendislik Dergisi 9 1 34–40.
IEEE D. Binbaşıoğlu, “Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri”, Karaelmas Fen ve Mühendislik Dergisi, c. 9, sy. 1, ss. 34–40, 2019, doi: 10.7212/zkufbd.v9i1.1213.
ISNAD Binbaşıoğlu, Demet. “Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri”. Karaelmas Fen ve Mühendislik Dergisi 9/1 (Ocak 2019), 34-40. https://doi.org/10.7212/zkufbd.v9i1.1213.
JAMA Binbaşıoğlu D. Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri. Karaelmas Fen ve Mühendislik Dergisi. 2019;9:34–40.
MLA Binbaşıoğlu, Demet. “Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri”. Karaelmas Fen Ve Mühendislik Dergisi, c. 9, sy. 1, 2019, ss. 34-40, doi:10.7212/zkufbd.v9i1.1213.
Vancouver Binbaşıoğlu D. Sıralı Düzgün Uzaylarda Lineer Olmayan Büzülmeler İçin İkili Sabit Nokta Teoremleri. Karaelmas Fen ve Mühendislik Dergisi. 2019;9(1):34-40.