BibTex RIS Kaynak Göster

Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials

Yıl 2018, Cilt: 8 Sayı: 1, 121 - 125, 01.01.2018

Öz

This study investigates trihalomethanes THMs removal from chlorinated drinking water sources with combined coagulation processes using single-walled carbon nanotubes SWCNTs and multi-walled carbon nanotubes MWCNTs . Terkos Lake water TLW , Büyükçekmece Lake water BLW and Ulutan Lake water ULW were used as drinking water source in this study. Conventional coagulation using aluminum sulfate alum and ferric chloride FeCl3 was also conducted using TLW, BLW and ULW sample. In the meantime, the chlorination of raw water samples within a reaction time of 168 hours was conducted in accordance with Standard Methods 5710 B. CHCl3 was the dominant THM species removed by SWNCNTs doses >75% followed by CHCl2Br >70% , CHBr2Cl >60% and CHBr3 >50% for three chlorinated water sources. The results demonstrate that the combined coagulation processes is more effective than effective than the conventional coagulants for THMs removal from various types of chlorinated water source waters.

Kaynakça

  • American Public Health Association (APHA) 2005. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA.
  • Bellar, TA., Lichtenberg, JJ., Kroner, RC. 1974. The occurrence of organohalides in chlorinated drinking waters. J. Am. Water Works Assoc., 66: 703–706.
  • Bina, B., Pourzamani, H., Rashidi, A., Amin, MM. 2012. Ethylbenzene Removal by Carbon Nanotubes from Aqueous Solution. J. Environ. Pub. Health. 1: 1-8.
  • Cedergen, MI., Selbing, AJ., Löfman, O., Bengt, AJ. 2002. Chlorination by products and nitrate in drinking water and risk for congenital cardiac defects. Environ. Res., 89(2): 124– 130.
  • Chungsying, L., Chung, YL., Chang, KF. 2005. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res., 39: 1183-1189.
  • Dickenson, ERV., Summers, RS., Crou´e , JP., Gallard, H. 2008. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic β-Dicarbonyl acidmodel compounds. Environ Sci Technol., 42(9): 3226–3233.
  • Dodds, L., King, W., Woolcott, C., Pole, J. 1999. Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology, 10(3): 233–241.
  • Elshorbagy, WE., Abu-Qadais, H., Elsheamy, MK. 2000. Simulation of THM species in water distribution systems. Water Res., 34: 3431–3439.
  • European Community (EEC) 1998.Council Directive 98/83/ EC of 3 November 1998 on the quality of water intended for human consumption. J. European Comm., L 330/32.
  • Golfinopoulos, SK. 2000. The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 41 (11): 1761– 1767.
  • Hu, J., Tong, Z., Hu, Z., Chen, G., Chen, T. 2012. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J. Colloid Interface Sci., 377: 355-361.

Klorlanmış İçme Suyu Kaynaklarında Karbon Nanotüp Materyalleri ile Trihalometan Bileşiklerinin Gideriminin İzlenmesi

Yıl 2018, Cilt: 8 Sayı: 1, 121 - 125, 01.01.2018

Öz

Bu çalışmada tek duvarlı SWCNTs ve çok duvarlı MWCNTs karbon nano tüpleri kullanılarak birleştirilmiş koagülasyon yöntemi ile klorlanmış içme suyu kaynaklarında meydana gelen trihalometan THM bileşiklerinin giderimi araştırılmıştır. Bu çalışmada içme suyu kaynağı olarak İstanbul İline içme suyu sağlayan Terkos Gölü ve Büyükçekmece Göl suyu ile birlikte Zonguldak İline içme suyu sağlayan Ulutan Baraj suları kullanılmıştır. Aynı zamanda 168 saatlik ham su örneklerinin klorlanması işlemi Standart Metotlar 5710-B’de belirtilen klorlama prosedürüne göre yapılmıştır. Yürütülen deneysel çalışmalarda en çok giderilen THM türü farklı SWCNT dozları kullanılarak koagüle edilen klorlanmış üç içme suyu kaynağında CHCl3 >%75 olduğu tespit edilirken, bunu sırası ile CHBr2Cl >60% ve CHBr3 >50% takip etmektedir. Bu çalışmanın sonuçları farklı organik madde içeriğine sahip klorlu içme suyu kaynaklarında THM giderimi için kullanılan birleşik koagülasyon prosesinin en etkili yöntemlerden birisi olduğunu ortaya koymuştur

Kaynakça

  • American Public Health Association (APHA) 2005. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA.
  • Bellar, TA., Lichtenberg, JJ., Kroner, RC. 1974. The occurrence of organohalides in chlorinated drinking waters. J. Am. Water Works Assoc., 66: 703–706.
  • Bina, B., Pourzamani, H., Rashidi, A., Amin, MM. 2012. Ethylbenzene Removal by Carbon Nanotubes from Aqueous Solution. J. Environ. Pub. Health. 1: 1-8.
  • Cedergen, MI., Selbing, AJ., Löfman, O., Bengt, AJ. 2002. Chlorination by products and nitrate in drinking water and risk for congenital cardiac defects. Environ. Res., 89(2): 124– 130.
  • Chungsying, L., Chung, YL., Chang, KF. 2005. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res., 39: 1183-1189.
  • Dickenson, ERV., Summers, RS., Crou´e , JP., Gallard, H. 2008. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic β-Dicarbonyl acidmodel compounds. Environ Sci Technol., 42(9): 3226–3233.
  • Dodds, L., King, W., Woolcott, C., Pole, J. 1999. Trihalomethanes in public water supplies and adverse birth outcomes. Epidemiology, 10(3): 233–241.
  • Elshorbagy, WE., Abu-Qadais, H., Elsheamy, MK. 2000. Simulation of THM species in water distribution systems. Water Res., 34: 3431–3439.
  • European Community (EEC) 1998.Council Directive 98/83/ EC of 3 November 1998 on the quality of water intended for human consumption. J. European Comm., L 330/32.
  • Golfinopoulos, SK. 2000. The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 41 (11): 1761– 1767.
  • Hu, J., Tong, Z., Hu, Z., Chen, G., Chen, T. 2012. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J. Colloid Interface Sci., 377: 355-361.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Kadir Özdemir Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özdemir, K. (2018). Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials. Karaelmas Fen Ve Mühendislik Dergisi, 8(1), 121-125.
AMA Özdemir K. Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2018;8(1):121-125.
Chicago Özdemir, Kadir. “Monitoring of Trihalomethanes Removal in Chlorinated Drinking Water Sources With Carbon Nanomaterials”. Karaelmas Fen Ve Mühendislik Dergisi 8, sy. 1 (Ocak 2018): 121-25.
EndNote Özdemir K (01 Ocak 2018) Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials. Karaelmas Fen ve Mühendislik Dergisi 8 1 121–125.
IEEE K. Özdemir, “Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials”, Karaelmas Fen ve Mühendislik Dergisi, c. 8, sy. 1, ss. 121–125, 2018.
ISNAD Özdemir, Kadir. “Monitoring of Trihalomethanes Removal in Chlorinated Drinking Water Sources With Carbon Nanomaterials”. Karaelmas Fen ve Mühendislik Dergisi 8/1 (Ocak 2018), 121-125.
JAMA Özdemir K. Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:121–125.
MLA Özdemir, Kadir. “Monitoring of Trihalomethanes Removal in Chlorinated Drinking Water Sources With Carbon Nanomaterials”. Karaelmas Fen Ve Mühendislik Dergisi, c. 8, sy. 1, 2018, ss. 121-5.
Vancouver Özdemir K. Monitoring of trihalomethanes removal in chlorinated drinking water sources with carbon nanomaterials. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(1):121-5.