BibTex RIS Kaynak Göster

Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri

Yıl 2018, Cilt: 8 Sayı: 1, 197 - 202, 01.01.2018

Öz

Bu çalışma, üçüncü mertebeden reaksiyon terimli dağılım dispersive denkleminin yarı analitik çözümlerini üzerinedir. Son zamanlarda ele alınan problem literatürde tam olarak çözülmüştür. Ayrıca, yarı analitik çözümler, önerilen reaksiyon-dağılım denkleminin çözümünde homotopi temelli yöntemlerin hassasiyetini anlamak için gereklidir. Seçilen pertürbasyon parametreleri ile sembolik hesaplama kullanarak, yarı analitik çözümler, homotopi ve Padé tekniklerinin verimliliğini göstermek için kesin çözümlerle karşılaştırılmaktadır. Elde edilen çözümler dağılımlı ortamda reaksiyon modellemesinde büyük rol oynamaktadır

Kaynakça

  • Baker, GAJr., Graves-Morris, P. 1996. Padé Approximants. Cambridge U.P.
  • Brezenski, C. 1996. Extrapolation algorithms and Padé approximations. Appl Numer Math, 20 (3): 299–318
  • Fisher, RA. 1937. The wave of advance of advantageous genes. Ann. Eugenics 7:353-369.
  • He, JH. 1999. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engng. 178 (3/4) : 257–262.
  • He, JH. 1998. An approximate solution technique depending upon an artificial parameter. Commun. Nonlinear Sci. Numer. Simulat. 3 (2): 92–97.
  • He, JH. 1998. Newton-like iteration method for solving algebraic equations. Commun. Nonlinear Sci. Numer. Simulat. 3 (2): 106– 109.
  • He, JH. 2000. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear Mech, 35 (1): 37–43.
  • He, JH. 2004. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156(2): 527-539.
  • Jegen, MD., Everett, ME., Schultz, A. 2001. Using homotopy to invert geophysical data. Geophysics 66 (6):1749–1760.
  • Kocak, H., Pinar, Z. 2017. On solutions of the fifth-order dispersive equations with porous medium type non-linearity. Wave Random Complex Media, DOI:10.1080/17455030.2017 .1367438, 2017.
  • Kolmogorov, AN., Petrovskii, I. G., Piskunov, NS. 1937. Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Bull. Moskov. Gos. Univ., Sect. A, 1:1–26. English. transl. In: Dynamics of Curved Fronts, P. Pelce, Ed., Acad. Press, Inc., New York, 1988, 105– 130.

Semi-analytical solutions of nonlinear equation modelling reaction in a dispersive medium

Yıl 2018, Cilt: 8 Sayı: 1, 197 - 202, 01.01.2018

Öz

This study explores the semi-analytical solutions of the third-order dispersive equation with reaction Fisher-like term. Recently, the proposed problem has been exactly solved in the literature. Additionally, the semi-analytical solutions are needed to understand the sensitivity of homotopy based methods in solving the proposed reaction-dispersion equation. Using symbolic computation with carefully chosen perturbation parameters, the semi-analytical solutions are compared with the exact solutions, in order to show the efficiency of homotopy and Padé techniques. Obtained solutions, which can play key role in modelling reaction in a dispersive medium, are illustrated and discussed.

Kaynakça

  • Baker, GAJr., Graves-Morris, P. 1996. Padé Approximants. Cambridge U.P.
  • Brezenski, C. 1996. Extrapolation algorithms and Padé approximations. Appl Numer Math, 20 (3): 299–318
  • Fisher, RA. 1937. The wave of advance of advantageous genes. Ann. Eugenics 7:353-369.
  • He, JH. 1999. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engng. 178 (3/4) : 257–262.
  • He, JH. 1998. An approximate solution technique depending upon an artificial parameter. Commun. Nonlinear Sci. Numer. Simulat. 3 (2): 92–97.
  • He, JH. 1998. Newton-like iteration method for solving algebraic equations. Commun. Nonlinear Sci. Numer. Simulat. 3 (2): 106– 109.
  • He, JH. 2000. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear Mech, 35 (1): 37–43.
  • He, JH. 2004. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156(2): 527-539.
  • Jegen, MD., Everett, ME., Schultz, A. 2001. Using homotopy to invert geophysical data. Geophysics 66 (6):1749–1760.
  • Kocak, H., Pinar, Z. 2017. On solutions of the fifth-order dispersive equations with porous medium type non-linearity. Wave Random Complex Media, DOI:10.1080/17455030.2017 .1367438, 2017.
  • Kolmogorov, AN., Petrovskii, I. G., Piskunov, NS. 1937. Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Bull. Moskov. Gos. Univ., Sect. A, 1:1–26. English. transl. In: Dynamics of Curved Fronts, P. Pelce, Ed., Acad. Press, Inc., New York, 1988, 105– 130.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Zehra Pinar Bu kişi benim

Hüseyin Kocak Bu kişi benim

Yasser Daoud Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Pinar, Z., Kocak, H., & Daoud, Y. (2018). Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri. Karaelmas Fen Ve Mühendislik Dergisi, 8(1), 197-202.
AMA Pinar Z, Kocak H, Daoud Y. Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2018;8(1):197-202.
Chicago Pinar, Zehra, Hüseyin Kocak, ve Yasser Daoud. “Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri”. Karaelmas Fen Ve Mühendislik Dergisi 8, sy. 1 (Ocak 2018): 197-202.
EndNote Pinar Z, Kocak H, Daoud Y (01 Ocak 2018) Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri. Karaelmas Fen ve Mühendislik Dergisi 8 1 197–202.
IEEE Z. Pinar, H. Kocak, ve Y. Daoud, “Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri”, Karaelmas Fen ve Mühendislik Dergisi, c. 8, sy. 1, ss. 197–202, 2018.
ISNAD Pinar, Zehra vd. “Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri”. Karaelmas Fen ve Mühendislik Dergisi 8/1 (Ocak 2018), 197-202.
JAMA Pinar Z, Kocak H, Daoud Y. Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:197–202.
MLA Pinar, Zehra vd. “Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri”. Karaelmas Fen Ve Mühendislik Dergisi, c. 8, sy. 1, 2018, ss. 197-02.
Vancouver Pinar Z, Kocak H, Daoud Y. Dağılımlı Bir Ortamda Doğrusal Olmayan Reaksiyon Model Denkleminin Yarı Analitik Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(1):197-202.