BibTex RIS Kaynak Göster

Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar

Yıl 2017, Cilt: 7 Sayı: 1, 202 - 205, 01.01.2017

Öz

Bu çalışmanın amacı, belirli üçüncü mertebeden doğrusal olmayan vektörel diferansiyel denklemlerin global asimptotik kararlılığını garanti etmek için yeterli şartları vermektir. Bu çalışmada sunulan sonuçlar önceden yayınlanmamış ve literatürdeki mevcut bazı sonuçları geliştirmiştir. Ana sonuçlarımızı resimlemek için basit bir örnek de verilmiştir

Kaynakça

  • Abou-El-Ela, AMA., Sadek, AI. 1990. A stability result for the solutions of a certain system of fourth-order differential equations. Ann. Differential Equations, 6(2): 131-141.
  • Ates, M. 2013. On the global stability properties and boundedness results of solutions of third-order nonlinear differential equations. J. Appl. Math., 4 pp.
  • Barbashin, EA. 1970. Lyapunov Functions. Izda, Nauka, Moscow, 240 pp.
  • Ezeilo, JOC. 1960. On the stability of solutions of certain differential equations of the third order. Quart. J. Math. Oxford Ser., 11: 64-69.
  • Iggidr, A., Sallet, G. 2003. On the stability of non-autonomous systems. Automatica J. IFAC., 39(1):167-171.
  • Korkmaz, E., Tunc, C. 2014. Stability and boundedness to certain differential equations of fourth order with multiple delays. Filomat, 28 (5): 1049–1058.
  • Korkmaz, E., Tunc, C. 2015. Convergence to non-autonomous differential equations of second order. J. Egyptian Math. Soc., 23 (1): 27–30.
  • Korkmaz, E., Tunc, C. 2016. On some qualitative behaviors of certain differential equations of fourth order with multiple retardations. J. Appl. Anal. Comput., 6 (2): 336–349.
  • LaSalle, JP. 1960. Some extensions to Lyapunov’s second method. IRE Trans. Circ. Thy., 7: 520–527.
  • Lyapunov, AM. 1992. The general problem of the stability of motion. CRC Press, 270 pp.
  • Omeike, MO. 2007. Further results on global stability of thirdorder nonlinear differential equations. Nonlinear Anal., 67(12): 3394-3400.
  • Qian, C. 2000. On global stability of third-order nonlinear differential equations. Nonlinear Anal., 42(4): 651-661.
  • Talukdar, A., Radwan, AG., Salama, KN. 2012. Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectronics J., (43): 169–175.
  • Tunc, C. 2004. Global stability of solutions of certain third-order nonlinear differential equations. Panamer. Math. J., 14(4): 31- 35.
  • Tunc, C., Ates, M. 2006. Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynam., 45(3-4): 273-281.
  • Tunc, C. 2006. Stability and boundedness results for certain nonlinear vector differential equations of fourth order. Nonlinear Oscil., 9(4): 536-551.
  • Tunc, C. 2009. On the stability and boundedness of solutions of nonlinear vector differential equations of third order. Nonlinear Anal., 70(6): 2232-2236.
  • Zhang, L., Yu, L. 2013. Global asymptotic stability of certain third-order nonlinear differential equations. Math. Methods Appl. Sci., 36(14): 1845-1850.

New results on global asymptotic stability of certain third order nonlinear vector differential equations

Yıl 2017, Cilt: 7 Sayı: 1, 202 - 205, 01.01.2017

Öz

The aim of this paper is to give sufficient conditions to guarantee global asymptotic stability of a certain third order nonlinear vector differential equation. The results presented in this work were not published before and upgraded some recent results in the current literature. A simple example is also given to illustrate our main results.

Kaynakça

  • Abou-El-Ela, AMA., Sadek, AI. 1990. A stability result for the solutions of a certain system of fourth-order differential equations. Ann. Differential Equations, 6(2): 131-141.
  • Ates, M. 2013. On the global stability properties and boundedness results of solutions of third-order nonlinear differential equations. J. Appl. Math., 4 pp.
  • Barbashin, EA. 1970. Lyapunov Functions. Izda, Nauka, Moscow, 240 pp.
  • Ezeilo, JOC. 1960. On the stability of solutions of certain differential equations of the third order. Quart. J. Math. Oxford Ser., 11: 64-69.
  • Iggidr, A., Sallet, G. 2003. On the stability of non-autonomous systems. Automatica J. IFAC., 39(1):167-171.
  • Korkmaz, E., Tunc, C. 2014. Stability and boundedness to certain differential equations of fourth order with multiple delays. Filomat, 28 (5): 1049–1058.
  • Korkmaz, E., Tunc, C. 2015. Convergence to non-autonomous differential equations of second order. J. Egyptian Math. Soc., 23 (1): 27–30.
  • Korkmaz, E., Tunc, C. 2016. On some qualitative behaviors of certain differential equations of fourth order with multiple retardations. J. Appl. Anal. Comput., 6 (2): 336–349.
  • LaSalle, JP. 1960. Some extensions to Lyapunov’s second method. IRE Trans. Circ. Thy., 7: 520–527.
  • Lyapunov, AM. 1992. The general problem of the stability of motion. CRC Press, 270 pp.
  • Omeike, MO. 2007. Further results on global stability of thirdorder nonlinear differential equations. Nonlinear Anal., 67(12): 3394-3400.
  • Qian, C. 2000. On global stability of third-order nonlinear differential equations. Nonlinear Anal., 42(4): 651-661.
  • Talukdar, A., Radwan, AG., Salama, KN. 2012. Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectronics J., (43): 169–175.
  • Tunc, C. 2004. Global stability of solutions of certain third-order nonlinear differential equations. Panamer. Math. J., 14(4): 31- 35.
  • Tunc, C., Ates, M. 2006. Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynam., 45(3-4): 273-281.
  • Tunc, C. 2006. Stability and boundedness results for certain nonlinear vector differential equations of fourth order. Nonlinear Oscil., 9(4): 536-551.
  • Tunc, C. 2009. On the stability and boundedness of solutions of nonlinear vector differential equations of third order. Nonlinear Anal., 70(6): 2232-2236.
  • Zhang, L., Yu, L. 2013. Global asymptotic stability of certain third-order nonlinear differential equations. Math. Methods Appl. Sci., 36(14): 1845-1850.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Muzaffer Ateş Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 1

Kaynak Göster

APA Ateş, M. (2017). Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar. Karaelmas Fen Ve Mühendislik Dergisi, 7(1), 202-205.
AMA Ateş M. Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2017;7(1):202-205.
Chicago Ateş, Muzaffer. “Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 1 (Ocak 2017): 202-5.
EndNote Ateş M (01 Ocak 2017) Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar. Karaelmas Fen ve Mühendislik Dergisi 7 1 202–205.
IEEE M. Ateş, “Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 1, ss. 202–205, 2017.
ISNAD Ateş, Muzaffer. “Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar”. Karaelmas Fen ve Mühendislik Dergisi 7/1 (Ocak 2017), 202-205.
JAMA Ateş M. Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:202–205.
MLA Ateş, Muzaffer. “Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 1, 2017, ss. 202-5.
Vancouver Ateş M. Belirli Üçüncü Mertebeden Doğrusal Olmayan Vektörel Diferansiyel Denklemlerin Global Asimptotik Kararlılığı Üzerine Yeni Sonuçlar. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(1):202-5.