BibTex RIS Kaynak Göster

Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği

Yıl 2017, Cilt: 7 Sayı: 1, 291 - 298, 01.01.2017

Öz

Bu çalışmada ucuz bir adsorbent olan uçucu külün sulu çözeltideki ağır metallerin gideriminde etkinliğinin belirlenmesi amaçlanmıştır. Bu amaçla akışkan yataklı Çan Termik Santrali uçucu külleri adsorbent olarak kullanılarak sulu çözeltideki bazı metal iyonlarını Cd, Co, Cr, Cu, Ni, Mn, Pb ve Zn adsorpsiyon kapasitesi oda sıcaklığında kesikli deneyler ile saptanmıştır. Deneysel bulgular ile uçucu külün en yüksek adsorpsiyon kapasitesinin Cu %67.29 ve Cd %53.66 metal iyonlarında olduğu gözlenmiştir. Uçucu kül kullanarak sulu çözeltideki metal giderimi dizilimi Cu> Cd> Pb> Zn> Cr> Co> Mn> Ni şeklindedir. Nötr pH koşulları ve az miktardaki uçucu külün sulu çözeltideki metal gideriminde uygun bir adsorbent olarak kullanılabileceği tespit edilmiştir

Kaynakça

  • Alinnor, IJ. 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel, 86: 853-857.
  • ASTM, 2008. ASTM C618 standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. In: Annual book of ASTM standards, Volume 4.02,West Conshohocken: ASTM International.
  • Azzam, R., Lambarki, M. 2004. Evaluation concept and testing method for heavy matal contaminant transport in the underground. In: R. Hack, R. Azzam, R. Charlier [Eds], Engineering Geology for Infrastructure Planning in Europe. Springer, Germany, pp. 117-124.
  • Baba, A. 2003. Geochemical assessment of environmental effects of ash from Yatagan (Mugla-Turkey) thermal power plant. Water Air Soil Poll., 144: 3-18.
  • Baba, A., Kaya, A., Birsoy, Y. 2003. The effect of Yatagan thermal power plant (Mugla-Turkey) on the quality of surface and ground waters. Water Air Soil Poll., 149: 93-111.
  • Baba, A., Gurdal, G., Sengunalp, F., Ozay, O. 2008. Effects of leachant temperature and pH on leachability of metals from fly ash: Case Study: Can Thermal Power Plant, Province of Canakkale, Turkey. Environ Monit Assess., 139(1-3): 287-298.
  • Baba, A., Gurdal, G., Sengunalp, F. 2010. Leaching characteristics of fly ash from fluidized bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey). Fuel Process Technol., 91(9): 1073-1080.
  • Backstrom, M., Sartz, L. 2011. Mixing of acid rock drainage with alkaline ash leachates-fate and immobilisation of trace elements. Water Air Soil Poll. 222: 377-389.
  • Banerjee, S., Sharmab, GC., Chattopadhyayaa, MC., Sharma, YC. 2014. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash. J Environ Chem Eng., 2(3) 1870-1880.
  • Bayat, B. 2002. Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II). J Hazard Mater., B95: 251-273.
  • Okumusoglu, D., Gunduz, O. 2013. Hydrochemical status of an Acidic Mining Lake in Can-Canakkale, Turkey. Water Environ Res., 85: 604-620.
  • Osmanlioglu, AE. 2014. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor. Waste Manag Res., 32(5): 366-370.
  • Ozmen, E. 2011. Termik santrallerden kaynaklanan küllerin yönetimi. http://www.tehlikeliatik.com/public/dosyalar/ Sunumlar/tehlikeli_atiklar/antalya-kul-sunum.pdf
  • Perez-Lopez, R., Cama, J., Nieto, JM., Ayora, C. 2007a. The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Ac., 71: 1921-1934
  • Perez-Lopez, R., Nieto, JM., Almodovar, GR. 2007b. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67: 1637-1646.
  • Qureshi, A., Jia, Y., Maurice, C., Ohlander, B. 2016. Potential of fly ash for neutralisation of acid mine drainage. Environ Sci Pollut Res., 23: 7083-17094.
  • Ricou, P., Lecuyer, I., Le Cloirec, P. 1998. Influence of pH on removal of heavy metallic cations by fly ash in aqueous solution. Environ Tech., 19: 1005-1016.
  • Sahoo, PK., Tripathy, S., Panigrahi, MK., Equeenuddin, MD. 2013. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. App Water Sci., 3: 567-576.
  • Sanliyuksel Yucel, D., Baba, A. 2013. Geochemical Characterization of acid mine lakes in Northwest Turkey and their effect on the environment. Arch Environ Contam Toxicol., 64: 357-376.
  • Sanliyuksel Yucel, D., Yucel, MA., Baba, A. 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environ Earth Sci., 72(11): 4311-4323.
  • Sanliyuksel Yucel, D., Balci, N., Baba, A. 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Arch Environ Contam Toxicol., 70 (4): 757-782.
  • Sanliyuksel Yucel, D., Baba, A., 2016. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environ Monit Assess. 188: 473, 16 pages. doi:10.1007/s10661-016- 5462-5
  • Sanliyuksel Yucel, D., Yucel, M.A. 2016. Determining Hydrochemical Characteristics of Mine Lakes from Abandoned Coal Mines and 3D Modelling of Them Using Unmanned Aerial Vehicle. Pamukkale Uni J Eng Sci., doi: 10.5505/pajes.2016.37431
  • solution using fly ash of different sources. Desalin Wat Treat., 57(13): 5800-5809.
  • Weng, CH., Huang, CP. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surface A., 247: 137-143.
  • Xenidis, S., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage., 22: 631-641.
  • Yeheyis, MB., Shang, JQ., Yanful, EK. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J Environ Manage., 91: 237-244.
  • Yucel, MA, Turan, RY. 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using High-Resolution Unmanned Aerial Vehicle Images. Arab J Sci Eng., 41: 4867-4878.
  • Zn(II) ions from wastewaters. J Hazard Mater., 156(1-3): 1-8.
  • Tokyay, M., Erdogan, K. 1998. Characterization of fly ash which are obtained from thermal power plants in Turkey, J Turkish Cement Manufac Assoc., August issue, pp. 40.
  • Weng, CH., Huang, CP. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surface A., 247: 137-143.
  • Xenidis, S., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage., 22: 631-641.
  • Yeheyis, MB., Shang, JQ., Yanful, EK. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J Environ Manage., 91: 237-244.
  • Yucel, MA, Turan, RY. 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using High-Resolution Unmanned Aerial Vehicle Images. Arab J Sci Eng., 41: 4867-4878.

Removal of Heavy Metals from Aqueous Solutıon Using Fly Ash: Çan Thermal Power Plant, NW Turkey as a Case Study

Yıl 2017, Cilt: 7 Sayı: 1, 291 - 298, 01.01.2017

Öz

This study was conducted to investigate use of fly ash created by fluidized bed combustion Can Thermal Power Plant for the removal of heavy metals from aqueous solutions as a low-cost adsorbent. The adsorption capacity of metal ions Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn from aqueous solution onto coal fly ash was studied in batch experiments, which were carried out at room temperature to investigate the efficiency of the adsorbent for removing selected metals. The highest adsorption capacities of fly ash were determined for Cu and Cd metals, with values of 67.29% and 53.66%, respectively. The following metal removal capacity of fly ash was determined: Cu > Cd > Pb > Zn > Cr > Co > Mn > Ni. The ash originating from coal combustion thermal power plant may be considered a viable adsorbent for metal ions from aqueous solutions at neutral pH conditions and with small amounts of fly ash.

Kaynakça

  • Alinnor, IJ. 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel, 86: 853-857.
  • ASTM, 2008. ASTM C618 standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. In: Annual book of ASTM standards, Volume 4.02,West Conshohocken: ASTM International.
  • Azzam, R., Lambarki, M. 2004. Evaluation concept and testing method for heavy matal contaminant transport in the underground. In: R. Hack, R. Azzam, R. Charlier [Eds], Engineering Geology for Infrastructure Planning in Europe. Springer, Germany, pp. 117-124.
  • Baba, A. 2003. Geochemical assessment of environmental effects of ash from Yatagan (Mugla-Turkey) thermal power plant. Water Air Soil Poll., 144: 3-18.
  • Baba, A., Kaya, A., Birsoy, Y. 2003. The effect of Yatagan thermal power plant (Mugla-Turkey) on the quality of surface and ground waters. Water Air Soil Poll., 149: 93-111.
  • Baba, A., Gurdal, G., Sengunalp, F., Ozay, O. 2008. Effects of leachant temperature and pH on leachability of metals from fly ash: Case Study: Can Thermal Power Plant, Province of Canakkale, Turkey. Environ Monit Assess., 139(1-3): 287-298.
  • Baba, A., Gurdal, G., Sengunalp, F. 2010. Leaching characteristics of fly ash from fluidized bed combustion thermal power plant: Case study: Çan (Çanakkale-Turkey). Fuel Process Technol., 91(9): 1073-1080.
  • Backstrom, M., Sartz, L. 2011. Mixing of acid rock drainage with alkaline ash leachates-fate and immobilisation of trace elements. Water Air Soil Poll. 222: 377-389.
  • Banerjee, S., Sharmab, GC., Chattopadhyayaa, MC., Sharma, YC. 2014. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash. J Environ Chem Eng., 2(3) 1870-1880.
  • Bayat, B. 2002. Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II). J Hazard Mater., B95: 251-273.
  • Okumusoglu, D., Gunduz, O. 2013. Hydrochemical status of an Acidic Mining Lake in Can-Canakkale, Turkey. Water Environ Res., 85: 604-620.
  • Osmanlioglu, AE. 2014. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor. Waste Manag Res., 32(5): 366-370.
  • Ozmen, E. 2011. Termik santrallerden kaynaklanan küllerin yönetimi. http://www.tehlikeliatik.com/public/dosyalar/ Sunumlar/tehlikeli_atiklar/antalya-kul-sunum.pdf
  • Perez-Lopez, R., Cama, J., Nieto, JM., Ayora, C. 2007a. The iron-coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochim Cosmochim Ac., 71: 1921-1934
  • Perez-Lopez, R., Nieto, JM., Almodovar, GR. 2007b. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere, 67: 1637-1646.
  • Qureshi, A., Jia, Y., Maurice, C., Ohlander, B. 2016. Potential of fly ash for neutralisation of acid mine drainage. Environ Sci Pollut Res., 23: 7083-17094.
  • Ricou, P., Lecuyer, I., Le Cloirec, P. 1998. Influence of pH on removal of heavy metallic cations by fly ash in aqueous solution. Environ Tech., 19: 1005-1016.
  • Sahoo, PK., Tripathy, S., Panigrahi, MK., Equeenuddin, MD. 2013. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. App Water Sci., 3: 567-576.
  • Sanliyuksel Yucel, D., Baba, A. 2013. Geochemical Characterization of acid mine lakes in Northwest Turkey and their effect on the environment. Arch Environ Contam Toxicol., 64: 357-376.
  • Sanliyuksel Yucel, D., Yucel, MA., Baba, A. 2014. Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environ Earth Sci., 72(11): 4311-4323.
  • Sanliyuksel Yucel, D., Balci, N., Baba, A. 2016. Generation of acid mine lakes associated with abandoned coal mines in NW Turkey. Arch Environ Contam Toxicol., 70 (4): 757-782.
  • Sanliyuksel Yucel, D., Baba, A., 2016. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study. Environ Monit Assess. 188: 473, 16 pages. doi:10.1007/s10661-016- 5462-5
  • Sanliyuksel Yucel, D., Yucel, M.A. 2016. Determining Hydrochemical Characteristics of Mine Lakes from Abandoned Coal Mines and 3D Modelling of Them Using Unmanned Aerial Vehicle. Pamukkale Uni J Eng Sci., doi: 10.5505/pajes.2016.37431
  • solution using fly ash of different sources. Desalin Wat Treat., 57(13): 5800-5809.
  • Weng, CH., Huang, CP. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surface A., 247: 137-143.
  • Xenidis, S., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage., 22: 631-641.
  • Yeheyis, MB., Shang, JQ., Yanful, EK. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J Environ Manage., 91: 237-244.
  • Yucel, MA, Turan, RY. 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using High-Resolution Unmanned Aerial Vehicle Images. Arab J Sci Eng., 41: 4867-4878.
  • Zn(II) ions from wastewaters. J Hazard Mater., 156(1-3): 1-8.
  • Tokyay, M., Erdogan, K. 1998. Characterization of fly ash which are obtained from thermal power plants in Turkey, J Turkish Cement Manufac Assoc., August issue, pp. 40.
  • Weng, CH., Huang, CP. 2004. Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surface A., 247: 137-143.
  • Xenidis, S., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manage., 22: 631-641.
  • Yeheyis, MB., Shang, JQ., Yanful, EK. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J Environ Manage., 91: 237-244.
  • Yucel, MA, Turan, RY. 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using High-Resolution Unmanned Aerial Vehicle Images. Arab J Sci Eng., 41: 4867-4878.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Deniz Şanlıyüksel Yücel Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 1

Kaynak Göster

APA Şanlıyüksel Yücel, D. (2017). Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği. Karaelmas Fen Ve Mühendislik Dergisi, 7(1), 291-298.
AMA Şanlıyüksel Yücel D. Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2017;7(1):291-298.
Chicago Şanlıyüksel Yücel, Deniz. “Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 1 (Ocak 2017): 291-98.
EndNote Şanlıyüksel Yücel D (01 Ocak 2017) Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği. Karaelmas Fen ve Mühendislik Dergisi 7 1 291–298.
IEEE D. Şanlıyüksel Yücel, “Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 1, ss. 291–298, 2017.
ISNAD Şanlıyüksel Yücel, Deniz. “Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği”. Karaelmas Fen ve Mühendislik Dergisi 7/1 (Ocak 2017), 291-298.
JAMA Şanlıyüksel Yücel D. Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:291–298.
MLA Şanlıyüksel Yücel, Deniz. “Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 1, 2017, ss. 291-8.
Vancouver Şanlıyüksel Yücel D. Sulu Çözeltideki Ağır Metallerin Uçucu Kül Kullanarak Giderimi: Çan Termik Santrali KB Türkiye Örneği. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(1):291-8.