BibTex RIS Kaynak Göster

Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi

Yıl 2017, Cilt: 7 Sayı: 2, 381 - 394, 01.06.2017

Öz

Günümüze kadar yapılan çalışmalarda, dolgu duvarların yanal rijitliğe olan katkısı ve bina periyoduna etkisi belirlenmiş, hemen hemen bütün deprem yönetmeliklerinde dolgu duvarların bina periyod değerlerine etkisi ampirik formüllerde bir katsayı olarak dikkate alınmıştır. Ancak dolgu duvarların elastisite modülü, kalınlığı ve dolgu duvarda yer alan boşlukların etkisi gibi parametreler ampirik formüllerde yer almamıştır. Bu çalışmada, dolgu duvarların elastisite modülünün, kalınlığının ve boşluk oranlarının periyoda etkisi nümerik modeller üzerinde analiz edilmiş ve diğer çalışmalarda elde edilen ampirik formüllerle karşılaştırılmıştır. Elde edilen sonuçlar mevcut binalar üzerinde kontrol edilmiştir

Kaynakça

  • Al Chaar, GK., Lamb, GE. 2002. Design of fiber-reinforced polymer materials for seismic rehabilitation of infilled concrete structures. US Army Corps of Engineers, Engineer Research and Development Center, ERDC/CERL TR-02-33
  • Amanat, KM., Hoque, E. 2006. A rationale for determining the natural period of RC building frames having infill. Eng. Struct., 28(4):495–502.
  • Asteris, PG. 2003. Lateral stiffness of brick masonry infilled frames. ASCE, 129 (8):1071-1079.
  • budak, A. 2006. The effect of infill walls on structure loads in Turkish. 7th international Advancements in Civil Engineering -13 October 2006, İstanbul
  • Celep, Z., Gençoğlu, M. 2003. The effect of the infill walls on reinforced concrete framed structures” in Turkish, 5th National Earthquake Conference, İstanbul.
  • Crowley, H., Pinho, R. 2004. Period-height relationship for existing European reinforced concrete buildings. Journal of Earthquake Engineering, 8(S.I.1):93-119.
  • Ersin, UD. 1997. Tiny vibration measurements and integration of infill walls to the mechanical model. M.Sc. Thesis, İstanbul Technical University, İstanbul.
  • Euro Code 8 (EC8) 2003. Design of structures for earthquake resistance. European Standard, prEN 1998-1.
  • Furtado, A., Rodrigues, H., Arêde, A. 2015. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using opensees. Int. J. Adv. Struct. Eng., 7:117- 127.
  • Goel, R. K. and Chopra, AK. 1997. Period formulas for moment- resisting frame buildings. ASCE J. Struct. Eng., 123(11):1454– 1461.
  • Goel, R. K. and Chopra, AK. 1998. Period formulas for concrete shear wall buildings. ASCE J. Struct. Eng., 124(4):426–433.
  • Goel, RK., Chopra, AK. 2000. Building period formulas for estimating seismic displacements. Earthq. Spec., 16(2):533- 536
  • Güler, K., Yüksel, E., Çelik, M., Altan, M. 2006. Fundamental periods of rc framed buildings having infill walls. 7th International Congress on Advances in Civil Engineering, Yildiz Technical University, Istanbul, Turkey
  • Güler, K., Yüksel, E., Koçak, A. 2008. Estimation of the fundamental vibration period of existing rc buildings in turkey utilizing ambient vibration records. J. Earthq. Eng., 12(S2): 140-150.

Prediction of The Fundamental Periods for Infilled RC Frame Structures

Yıl 2017, Cilt: 7 Sayı: 2, 381 - 394, 01.06.2017

Öz

The contribution of infill walls to lateral stiffness and their effect on the natural vibration period of the buildings has been expressed in many studies. An infill wall’s effect on the natural vibration period of a building is taken into account by empirical formulas in almost all earthquake codes. These formulations are based on the structures’ height and the infill walls are taken into account by a coefficient. However, such parameters like wall thickness, modulus of elasticity of the walls and opening ratio in infill walls are not considered. In this study the effects of the thickness, modulus of elasticity and opening ratio of an infill wall on the natural vibration period are analyzed and the results have been compared with empirical formulas obtained from other studies in the literature.

Kaynakça

  • Al Chaar, GK., Lamb, GE. 2002. Design of fiber-reinforced polymer materials for seismic rehabilitation of infilled concrete structures. US Army Corps of Engineers, Engineer Research and Development Center, ERDC/CERL TR-02-33
  • Amanat, KM., Hoque, E. 2006. A rationale for determining the natural period of RC building frames having infill. Eng. Struct., 28(4):495–502.
  • Asteris, PG. 2003. Lateral stiffness of brick masonry infilled frames. ASCE, 129 (8):1071-1079.
  • budak, A. 2006. The effect of infill walls on structure loads in Turkish. 7th international Advancements in Civil Engineering -13 October 2006, İstanbul
  • Celep, Z., Gençoğlu, M. 2003. The effect of the infill walls on reinforced concrete framed structures” in Turkish, 5th National Earthquake Conference, İstanbul.
  • Crowley, H., Pinho, R. 2004. Period-height relationship for existing European reinforced concrete buildings. Journal of Earthquake Engineering, 8(S.I.1):93-119.
  • Ersin, UD. 1997. Tiny vibration measurements and integration of infill walls to the mechanical model. M.Sc. Thesis, İstanbul Technical University, İstanbul.
  • Euro Code 8 (EC8) 2003. Design of structures for earthquake resistance. European Standard, prEN 1998-1.
  • Furtado, A., Rodrigues, H., Arêde, A. 2015. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using opensees. Int. J. Adv. Struct. Eng., 7:117- 127.
  • Goel, R. K. and Chopra, AK. 1997. Period formulas for moment- resisting frame buildings. ASCE J. Struct. Eng., 123(11):1454– 1461.
  • Goel, R. K. and Chopra, AK. 1998. Period formulas for concrete shear wall buildings. ASCE J. Struct. Eng., 124(4):426–433.
  • Goel, RK., Chopra, AK. 2000. Building period formulas for estimating seismic displacements. Earthq. Spec., 16(2):533- 536
  • Güler, K., Yüksel, E., Çelik, M., Altan, M. 2006. Fundamental periods of rc framed buildings having infill walls. 7th International Congress on Advances in Civil Engineering, Yildiz Technical University, Istanbul, Turkey
  • Güler, K., Yüksel, E., Koçak, A. 2008. Estimation of the fundamental vibration period of existing rc buildings in turkey utilizing ambient vibration records. J. Earthq. Eng., 12(S2): 140-150.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ali Koçak Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Koçak, A. (2017). Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi. Karaelmas Fen Ve Mühendislik Dergisi, 7(2), 381-394.
AMA Koçak A. Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2017;7(2):381-394.
Chicago Koçak, Ali. “Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 2 (Haziran 2017): 381-94.
EndNote Koçak A (01 Haziran 2017) Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi. Karaelmas Fen ve Mühendislik Dergisi 7 2 381–394.
IEEE A. Koçak, “Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 2, ss. 381–394, 2017.
ISNAD Koçak, Ali. “Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi”. Karaelmas Fen ve Mühendislik Dergisi 7/2 (Haziran 2017), 381-394.
JAMA Koçak A. Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:381–394.
MLA Koçak, Ali. “Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 2, 2017, ss. 381-94.
Vancouver Koçak A. Dolgu Duvarlı Betonarme Çerçeveli Binalarda Hakim Periyodun Belirlenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(2):381-94.