BibTex RIS Kaynak Göster

Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu

Yıl 2017, Cilt: 7 Sayı: 2, 438 - 448, 01.06.2017

Öz

Bu çalışmada Sivas İlinden temin edilen, Talc ve Chrysotile doğal killerinin bazik tekstil boyası Astrazon Mavisi giderimdeki kullanım potansiyeli araştırılmıştır. Çalışma kapsamında farklı boya başlangıç konsantrasyonları 100-400 mg/L , pH , adsorbent miktarı 1-4 g/L ve sıcaklıklarda 313-333 K çalışılmıştır. Sonuçlar; artan başlangıç konsantrasyonu, pH, adsorbent miktarı ve sıcaklığın adsorpsiyon kapasitesini artırdığını göstermiştir. İlave olarak, üç kinetik model; yalancı birinci, yalancı ikinci ve partikül içi diffüzyon modeli adsorpsiyon sabitlerinin hesaplanması için kullanılmıştır. Sonuçlar en yüksek korelasyon katsayılarının R2>0.9960 , yalancı ikinci dereceden kinetik ile elde edildiğini göstermektedir. Doğal killer kıyaslandığında Talc’ın Chrysotile’den daha yüksek giderim verimi ve adsorpsiyon kapasitesine sahip olduğu görülmüştür. pH 7’de, 300 mg/L başlangıç boya konsantrasyonunda ve 1020 dakikalık karıştırma süresinde Talc ve Chrysotile için en yüksek adsorpsiyon kapasiteleri 284 mg/g ve 169 mg/g olarak elde edilmiştir

Kaynakça

  • Alaton, I.A., Balcioglu, I.A. & Bahnemann, D.W., 2002. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36(5), pp.1143–1154.
  • Alyüz, B. & Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), pp.482–488.
  • Belkacem, M., Khodir, M. & Abdelkrim, S., 2008. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination, 228(1–3), pp.245–254. Available at: http://www.sciencedirect. com/science/article/pii/S0011916408002506 [Accessed May 23, 2016].
  • Bello, O.S., Bello, I.A. & Adegoke, K.A., 2013. Adsorption of dyes using different types of sand: A review. South African Journal of Chemistry, 66(SEPTEMBER), p.0. Available at: http:// www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0379- 43502013000100024&nrm=iso.
  • Bhaskar Raju, G. et al., 2009. Electrochemical pretreatment of textile effluents and effect of electrode materials on the removal of organics. Desalination, 249(1), pp.167–174. Available at: http://dx.doi.org/10.1016/j.desal.2008.08.012.
  • Doğan, M. et al., 2004. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109(1–3), pp.141–148.
  • Gengec, E., 2015. Color removal from anaerobic/aerobic treatment effluent of bakery yeast wastewater by polyaniline/ beidellite composite materials. Journal of Environmental Chemical Engineering, 3(4), pp.2484–2491. Available at: http:// linkinghub.elsevier.com/retrieve/pii/S2213343715002390.
  • Greaves, A.J., Phillips, D.A.S. & Taylor, J.A., 1999. Correlation between the bioelimination of anionic dyes by an activated sewage sludge with molecular structure. Part 1: Literature review. Journal of the Society of Dyers and Colourists, 115(12), pp.363–365.
  • Hameed, B.H., Mahmoud, D.K. & Ahmad, A.L., 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1), pp.65–72.
  • Ho, Y.S. & McKay, G., 1998. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. The Canadian journal of chemical engineering, 76(4), pp.822–827.
  • Huang, P. & Fuerstenau, D.W., 2001. The effect of the adsorption of lead and cadmium ions on the interfacial behavior of quartz and talc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2–3), pp.147–156.
  • Ismadji, S., Soetaredjo, F.E. & Ayucitra, A., 2015. Clay Materials for Environmental Remediation, Available at: https:// books.google.com.tr/books/about/Clay_Materials_for_ Environmental_Remedia.html?id=b6qgBwAAQBAJ&pgis=1 [Accessed January 31, 2017].
  • Jenkins, P. & Ralston, J., 1998. The adsorption of a polysaccharide at the talc–aqueous solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 139(1), pp.27–40.
  • Kannan, N. & Sundaram, M.M., 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51(1), pp.25–40.
  • Karagozoglu, B. et al., 2007. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials, 147(1–2), pp.297–306.
  • Khraisheh, M. et al., 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. International Journal of Mineral Processing, 75(3–4), pp.197–206.
  • Kobya, M., Gengec, E. & Demirbas, E., 2015. Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 101, pp.87–100. Available at: http://dx.doi.org/10.1016/j. cep.2015.11.012.
  • Liu, K. et al., 2013. Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: Thermodynamic and kinetic studies. Applied Clay Science, 80–81, pp.38–45. Available at: http://dx.doi.org/10.1016/j.clay.2013.05.014.
  • Malamis, S., Katsou, E. & Haralambous, K.J., 2011. Evaluation of the Efficiency of a Combined Adsorption–Ultrafiltration System for the Removal of Heavy Metals, Color, and Organic Matter from Textile Wastewater. Separation Science and Technology, 46(6), pp.920–932. Available at: http://www. informaworld.com/10.1080/01496395.2010.551166.
  • Marungrueng, K. & Pavasant, P., 2006. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera. Journal of Environmental Management, 78(3), pp.268–274.
  • Ongen, A. et al., 2012. Adsorption of Astrazon Blue FGRL onto sepiolite from aqueous solutions. Desalination and Water Treatment, 40(1–3), pp.129–136.
  • Pimol, P., Khanidtha, M. & Prasert, P., 2008. Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: dried Seagrape (Caulerpa lentillifera). Journal of Environmental Sciences, 20(6), pp.760–768.
  • Raffiea Baseri, J., Palanisamy, P.N. & Sivakumar, P., 2012. Application of polyaniline nano composite for the adsorption of acid dye from aqueous solutions. E-Journal of Chemistry, 9(3), pp.1266–1275.
  • Rafiq, Z. et al., 2014. Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. Journal of Environmental Chemical Engineering, 2(1), pp.642–651.
  • Sprynskyy, M. et al., 2011. Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171(3), pp.1185–1193. Available at: http://dx.doi. org/10.1016/j.cej.2011.05.022.
  • Sun, Q. & Yang, L., 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7), pp.1535–1544.
  • Szpyrkowicz, L., Juzzolino, C. & Kaul, S.N., 2001. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Research, 35(9), pp.2129–2136.
  • Valentim, I.B. & Joekes, I., 2006. Adsorption of sodium dodecylsulfate on chrysotile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1–3), pp.106–111.
  • Vandevivere, P.C., Bianchi, R. & Verstraete, W., 1998. Review Treatment and Reuse of Wastewater from the Textile WetProcessing Industr y: Review of Emerging Technologies. J. Chem. T echnol. Biotechnol, 72, pp.289–302.
  • Verma, A.K., Dash, R.R. & Bhunia, P., 2012. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), pp.154–168. Available at: http://dx.doi. org/10.1016/j.jenvman.2011.09.012.
  • Yu, S. et al., 2015. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. Journal of Environmental Chemical Engineering, 3(2), pp.752–762. Available at: http://dx.doi.org/10.1016/j. jece.2015.03.023.
  • Zahrim, A.Y., Tizaoui, C. & Hilal, N., 2011. Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266(1–3), pp.1–16. Available at: http://dx.doi.org/10.1016/j.desal.2010.08.012.

The adsorption of basic dye Astrazon Blue FGRL from aqueous solutions onto two different clays: Talc and Chrysotile

Yıl 2017, Cilt: 7 Sayı: 2, 438 - 448, 01.06.2017

Öz

In this study, Talc and Chrysotile were obtained from Sivas, Turkey and used as adsorbents for the investigation of the adsorption of the basic dye Astrazon Blue FGRL from aqueous solutions at various dye concentrations 100–400 mg/L , initial pH 3-7 , adsorbent doses 1-4 g/L , contact time 2.5-1400 min and temperatures 313–333 K . The result showed that the adsorption capacity of the dye increased with increasing initial dye concentration, pH, adsorbent dose and temperature. In addition, three kinetic models; the pseudo first order, pseudo second order and intraparticle diffusion, were used to predict the adsorption rate constants. The results showed that the highest correlation coefficients R2>0.9960 were obtained for pseudo second order kinetics. When the natural clays were compared, it was observed that, Talc showed higher removal efficiencies and adsorption capacity than Chrysotile. The highest adsorption capacity was obtained as 284 mg/g and 169 mg/g for Talc and Chrysotile at pH 7, 298 ºK, 300 mg/L of initial dye concentration and 1020 min of agitation time, respectively. The results showed that Talc and Chrysotile have important potentials for removal of basic dyes which are cheap and easy available.

Kaynakça

  • Alaton, I.A., Balcioglu, I.A. & Bahnemann, D.W., 2002. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36(5), pp.1143–1154.
  • Alyüz, B. & Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), pp.482–488.
  • Belkacem, M., Khodir, M. & Abdelkrim, S., 2008. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination, 228(1–3), pp.245–254. Available at: http://www.sciencedirect. com/science/article/pii/S0011916408002506 [Accessed May 23, 2016].
  • Bello, O.S., Bello, I.A. & Adegoke, K.A., 2013. Adsorption of dyes using different types of sand: A review. South African Journal of Chemistry, 66(SEPTEMBER), p.0. Available at: http:// www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0379- 43502013000100024&nrm=iso.
  • Bhaskar Raju, G. et al., 2009. Electrochemical pretreatment of textile effluents and effect of electrode materials on the removal of organics. Desalination, 249(1), pp.167–174. Available at: http://dx.doi.org/10.1016/j.desal.2008.08.012.
  • Doğan, M. et al., 2004. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109(1–3), pp.141–148.
  • Gengec, E., 2015. Color removal from anaerobic/aerobic treatment effluent of bakery yeast wastewater by polyaniline/ beidellite composite materials. Journal of Environmental Chemical Engineering, 3(4), pp.2484–2491. Available at: http:// linkinghub.elsevier.com/retrieve/pii/S2213343715002390.
  • Greaves, A.J., Phillips, D.A.S. & Taylor, J.A., 1999. Correlation between the bioelimination of anionic dyes by an activated sewage sludge with molecular structure. Part 1: Literature review. Journal of the Society of Dyers and Colourists, 115(12), pp.363–365.
  • Hameed, B.H., Mahmoud, D.K. & Ahmad, A.L., 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1), pp.65–72.
  • Ho, Y.S. & McKay, G., 1998. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. The Canadian journal of chemical engineering, 76(4), pp.822–827.
  • Huang, P. & Fuerstenau, D.W., 2001. The effect of the adsorption of lead and cadmium ions on the interfacial behavior of quartz and talc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2–3), pp.147–156.
  • Ismadji, S., Soetaredjo, F.E. & Ayucitra, A., 2015. Clay Materials for Environmental Remediation, Available at: https:// books.google.com.tr/books/about/Clay_Materials_for_ Environmental_Remedia.html?id=b6qgBwAAQBAJ&pgis=1 [Accessed January 31, 2017].
  • Jenkins, P. & Ralston, J., 1998. The adsorption of a polysaccharide at the talc–aqueous solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 139(1), pp.27–40.
  • Kannan, N. & Sundaram, M.M., 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51(1), pp.25–40.
  • Karagozoglu, B. et al., 2007. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials, 147(1–2), pp.297–306.
  • Khraisheh, M. et al., 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. International Journal of Mineral Processing, 75(3–4), pp.197–206.
  • Kobya, M., Gengec, E. & Demirbas, E., 2015. Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 101, pp.87–100. Available at: http://dx.doi.org/10.1016/j. cep.2015.11.012.
  • Liu, K. et al., 2013. Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: Thermodynamic and kinetic studies. Applied Clay Science, 80–81, pp.38–45. Available at: http://dx.doi.org/10.1016/j.clay.2013.05.014.
  • Malamis, S., Katsou, E. & Haralambous, K.J., 2011. Evaluation of the Efficiency of a Combined Adsorption–Ultrafiltration System for the Removal of Heavy Metals, Color, and Organic Matter from Textile Wastewater. Separation Science and Technology, 46(6), pp.920–932. Available at: http://www. informaworld.com/10.1080/01496395.2010.551166.
  • Marungrueng, K. & Pavasant, P., 2006. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera. Journal of Environmental Management, 78(3), pp.268–274.
  • Ongen, A. et al., 2012. Adsorption of Astrazon Blue FGRL onto sepiolite from aqueous solutions. Desalination and Water Treatment, 40(1–3), pp.129–136.
  • Pimol, P., Khanidtha, M. & Prasert, P., 2008. Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: dried Seagrape (Caulerpa lentillifera). Journal of Environmental Sciences, 20(6), pp.760–768.
  • Raffiea Baseri, J., Palanisamy, P.N. & Sivakumar, P., 2012. Application of polyaniline nano composite for the adsorption of acid dye from aqueous solutions. E-Journal of Chemistry, 9(3), pp.1266–1275.
  • Rafiq, Z. et al., 2014. Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. Journal of Environmental Chemical Engineering, 2(1), pp.642–651.
  • Sprynskyy, M. et al., 2011. Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171(3), pp.1185–1193. Available at: http://dx.doi. org/10.1016/j.cej.2011.05.022.
  • Sun, Q. & Yang, L., 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7), pp.1535–1544.
  • Szpyrkowicz, L., Juzzolino, C. & Kaul, S.N., 2001. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Research, 35(9), pp.2129–2136.
  • Valentim, I.B. & Joekes, I., 2006. Adsorption of sodium dodecylsulfate on chrysotile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1–3), pp.106–111.
  • Vandevivere, P.C., Bianchi, R. & Verstraete, W., 1998. Review Treatment and Reuse of Wastewater from the Textile WetProcessing Industr y: Review of Emerging Technologies. J. Chem. T echnol. Biotechnol, 72, pp.289–302.
  • Verma, A.K., Dash, R.R. & Bhunia, P., 2012. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), pp.154–168. Available at: http://dx.doi. org/10.1016/j.jenvman.2011.09.012.
  • Yu, S. et al., 2015. Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution. Journal of Environmental Chemical Engineering, 3(2), pp.752–762. Available at: http://dx.doi.org/10.1016/j. jece.2015.03.023.
  • Zahrim, A.Y., Tizaoui, C. & Hilal, N., 2011. Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 266(1–3), pp.1–16. Available at: http://dx.doi.org/10.1016/j.desal.2010.08.012.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Erhan Gengec Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Gengec, E. (2017). Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu. Karaelmas Fen Ve Mühendislik Dergisi, 7(2), 438-448.
AMA Gengec E. Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2017;7(2):438-448.
Chicago Gengec, Erhan. “Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 2 (Haziran 2017): 438-48.
EndNote Gengec E (01 Haziran 2017) Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu. Karaelmas Fen ve Mühendislik Dergisi 7 2 438–448.
IEEE E. Gengec, “Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 2, ss. 438–448, 2017.
ISNAD Gengec, Erhan. “Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu”. Karaelmas Fen ve Mühendislik Dergisi 7/2 (Haziran 2017), 438-448.
JAMA Gengec E. Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:438–448.
MLA Gengec, Erhan. “Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 2, 2017, ss. 438-4.
Vancouver Gengec E. Bazik Boyanın Astrazon Mavisi FGRL Iki Farklı Doğal Kil Üzerine Adsorpsiyonu. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(2):438-4.