BibTex RIS Kaynak Göster

Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi

Yıl 2017, Cilt: 7 Sayı: 2, 696 - 705, 01.06.2017

Öz

Müşteri Ayrılma Tahmin Analizi, dünya çapındaki müşteri odaklı sektörlerdeki şirketlerin müşterilerinin davranışlarını analiz ederek, bu müşterilerden hizmet almayı bırakmayı düşünenleri tahmin etmeye yönelik olarak kullandıkları bir inceleme şeklidir. Veri madenciliği temelli bu analiiz yöntemi, günümüzdeki ticari şartlarda yeni müşteri kazanmanın eldekini tutmaya göre daha maliyetli olması dolayısıyla çok daha önemli bir hale gelmiştir. Sunulan çalışmada, literatürde bulunan haberleşme sektörüne yönelik yapılmış Müşteri Ayrılma Tahmin Analizi çalışmaları, bu çalışmalarda sıklıkla kullanılan veri madenciliği yöntemleri, elde edilen sonuçlar ve performansları hakkında bilgi vermek ve ileriye yönelik çalışmalara ışık tutmak amaçlanmıştır. Derlemenin güncel olması için de son beş yıldaki yayınlar ve ağırlıklı olarak da son iki yıldaki çalışmalara yer verilmiştir

Kaynakça

  • AlOmari, D., Hassan, M.M. 2016. Predicting Telecommunication Customer Churn Using Data Mining Techniques. 9th International Conference on Internet and Distributed Computing Systems, 167-178.
  • Amin, A., Khan, C., Ali, I., Anwar, A. 2014. Customer Churn Prediction in Telecommunication Industry: with and without counter-Example. European Network Intelligence Conference, 134-137.
  • Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., Huang, K. 2016. Customer Churn Prediction in Telecommunication Sector using Rough Set Approach. Neurocomputing, http://dx.doi.org/10.1016/j. neucom.2016.12.009, 2016:1-21.
  • Argüden Y., Erşahin B. 2008. Veri Madenciliği: Veriden Bilgiye, Masraftan Değere. ARGE Danışmanlık, ISBN: 978-975- 93641-9-9 1. Basım.
  • Backiel, A., Verbinnen, Y., Baesens, B., Claeskens, G. 2015. Combining Local and Social Network Classifiers to Improve Churn Prediction. International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 651-658.
  • Brandusoiu, I., Toderean, G. 2013. Churn Prediction In The Telecommunications Sector Using Support Vector Machines. Annals Of The Oradea Un., Fascicle Manag. and Tech. Eng., 1: 19-22.
  • Brandusoiu, I., Toderean, G., Beleiu, H. 2016. Methods for churn prediction in the pre-paid mobile telecommunications industry. International Conference on Communications (COMM), 97-100.
  • Coussement, K., Lessmann, S., Verstraeten, G. 2016. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Supp. Sys., 2016, http:// dx.doi.org/10.1016/j.dss.2016.11.007.
  • Dahiya, K., Bhatia, S. 2015. Customer Churn Analysis in Telecom Industry. 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), 1-6.
  • Dalvi, PK., Khandge, SK., Deomore, A. 2016. Analysis of customer churn prediction in telecom industry using decision trees and logistic regression. Symposium on Colossal Data Analysis and Networking (CDAN), DOI: 10.1109/ CDAN.2016.7570883, 1-8.
  • Rodan, A., Faris, H. 2015. Echo State Network with SVM- readout for Customer Churn Prediction, IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5.
  • Savas, S., Topaloglu, N., Yılmaz, M. 2012. Veri Madenciliği Ve Türkiye’deki Uygulama Örnekleri. İstanbul Ticaret Ün. Fen Bil. Derg., 11 (21): 1-23.
  • Seker, S.E. 2016. Müşteri Kayıp Analizi (Customer Churn Analysis). YBS Ansiklopedi, 3 (1): 26-29.
  • Stripling, E., Broucke, S., Antonio, K., Baesens, B., Snoeck, M. 2015. Profit Maximizing Logistic Regression Modeling for Customer Churn Prediction, International Conference on Data Science and Advanced Analytics (DSAA), 1-10.
  • Tanneedi, N. N. P. P. 2016. Customer Churn Prediction Using Big Data Analytics. PhD Thesis from Blekinge Institute of Technology.
  • Umayaparvathi, V., Iyakutti, K. 2016. Attribute Selection and Customer Churn Prediction in Telecom Industry, International Conference on Data Mining and Advanced Computing (SAPIENCE), 1-7.
  • Verbeke, W., Dejaeger, K., Martens, D., Hur. J., Baesens, B. 2012. New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European J. Operat. Res., 218 (1): 211–229.
  • Yabas, U., Cankaya, H. C., Ince, T. 2014. Customer Churn Prediction For Telecom Services. IEEE 36th Annual Computer Software and Applications Conference (COMPSAC), 358-359.
  • Yihui, Q., Chiyu, Z. 2016. Research of Indicator System in Customer Churn Prediction for Telecom Industry. 11th International Conference on Computer Science & Education (ICCSE), 123-130.
  • Yildiz, M., Albayrak, S. 2015. Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmini. 23th Signal Processing and Communications Applications Conference (SIU), 256-259.
  • Yu, R., An, X., Jin, B., Shi, J., Move, O.A., Liu, Y. 2016. Particle classification optimization-based BP network for telecommunication customer churn prediction. Neural Comput. & Applic., DOI: 10.1007/s00521-016-2477-3, 2016:1-14.

Review of Customer Churn Analysis Studies in Telecommunications Industry

Yıl 2017, Cilt: 7 Sayı: 2, 696 - 705, 01.06.2017

Öz

Churn Analysis is one of the world wide used analysis on Subscription Oriented Industries to analyze customer behaviors to predict the customers which are about to leave the service aggrement from a company. It is based on Data Mining methods and algorithms and become so important for companies in today’s commercial conditions as gaining a new customer’s cost is more than holding the existing ones.The paper reviews the releveant studies on Customer Churn Analysis on Telecommunication Industry in literature to present a general information to readers about the frequently used data mining methods used, results and performance of the methods and shedding a light to further studies. To keep the review up to date, studies published in last five years and mainly last two years have been included.

Kaynakça

  • AlOmari, D., Hassan, M.M. 2016. Predicting Telecommunication Customer Churn Using Data Mining Techniques. 9th International Conference on Internet and Distributed Computing Systems, 167-178.
  • Amin, A., Khan, C., Ali, I., Anwar, A. 2014. Customer Churn Prediction in Telecommunication Industry: with and without counter-Example. European Network Intelligence Conference, 134-137.
  • Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., Huang, K. 2016. Customer Churn Prediction in Telecommunication Sector using Rough Set Approach. Neurocomputing, http://dx.doi.org/10.1016/j. neucom.2016.12.009, 2016:1-21.
  • Argüden Y., Erşahin B. 2008. Veri Madenciliği: Veriden Bilgiye, Masraftan Değere. ARGE Danışmanlık, ISBN: 978-975- 93641-9-9 1. Basım.
  • Backiel, A., Verbinnen, Y., Baesens, B., Claeskens, G. 2015. Combining Local and Social Network Classifiers to Improve Churn Prediction. International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 651-658.
  • Brandusoiu, I., Toderean, G. 2013. Churn Prediction In The Telecommunications Sector Using Support Vector Machines. Annals Of The Oradea Un., Fascicle Manag. and Tech. Eng., 1: 19-22.
  • Brandusoiu, I., Toderean, G., Beleiu, H. 2016. Methods for churn prediction in the pre-paid mobile telecommunications industry. International Conference on Communications (COMM), 97-100.
  • Coussement, K., Lessmann, S., Verstraeten, G. 2016. A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis. Supp. Sys., 2016, http:// dx.doi.org/10.1016/j.dss.2016.11.007.
  • Dahiya, K., Bhatia, S. 2015. Customer Churn Analysis in Telecom Industry. 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), 1-6.
  • Dalvi, PK., Khandge, SK., Deomore, A. 2016. Analysis of customer churn prediction in telecom industry using decision trees and logistic regression. Symposium on Colossal Data Analysis and Networking (CDAN), DOI: 10.1109/ CDAN.2016.7570883, 1-8.
  • Rodan, A., Faris, H. 2015. Echo State Network with SVM- readout for Customer Churn Prediction, IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-5.
  • Savas, S., Topaloglu, N., Yılmaz, M. 2012. Veri Madenciliği Ve Türkiye’deki Uygulama Örnekleri. İstanbul Ticaret Ün. Fen Bil. Derg., 11 (21): 1-23.
  • Seker, S.E. 2016. Müşteri Kayıp Analizi (Customer Churn Analysis). YBS Ansiklopedi, 3 (1): 26-29.
  • Stripling, E., Broucke, S., Antonio, K., Baesens, B., Snoeck, M. 2015. Profit Maximizing Logistic Regression Modeling for Customer Churn Prediction, International Conference on Data Science and Advanced Analytics (DSAA), 1-10.
  • Tanneedi, N. N. P. P. 2016. Customer Churn Prediction Using Big Data Analytics. PhD Thesis from Blekinge Institute of Technology.
  • Umayaparvathi, V., Iyakutti, K. 2016. Attribute Selection and Customer Churn Prediction in Telecom Industry, International Conference on Data Mining and Advanced Computing (SAPIENCE), 1-7.
  • Verbeke, W., Dejaeger, K., Martens, D., Hur. J., Baesens, B. 2012. New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European J. Operat. Res., 218 (1): 211–229.
  • Yabas, U., Cankaya, H. C., Ince, T. 2014. Customer Churn Prediction For Telecom Services. IEEE 36th Annual Computer Software and Applications Conference (COMPSAC), 358-359.
  • Yihui, Q., Chiyu, Z. 2016. Research of Indicator System in Customer Churn Prediction for Telecom Industry. 11th International Conference on Computer Science & Education (ICCSE), 123-130.
  • Yildiz, M., Albayrak, S. 2015. Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmini. 23th Signal Processing and Communications Applications Conference (SIU), 256-259.
  • Yu, R., An, X., Jin, B., Shi, J., Move, O.A., Liu, Y. 2016. Particle classification optimization-based BP network for telecommunication customer churn prediction. Neural Comput. & Applic., DOI: 10.1007/s00521-016-2477-3, 2016:1-14.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Fatih Kayaalp Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Kayaalp, F. (2017). Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi. Karaelmas Fen Ve Mühendislik Dergisi, 7(2), 696-705.
AMA Kayaalp F. Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2017;7(2):696-705.
Chicago Kayaalp, Fatih. “Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 2 (Haziran 2017): 696-705.
EndNote Kayaalp F (01 Haziran 2017) Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi. Karaelmas Fen ve Mühendislik Dergisi 7 2 696–705.
IEEE F. Kayaalp, “Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 2, ss. 696–705, 2017.
ISNAD Kayaalp, Fatih. “Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi”. Karaelmas Fen ve Mühendislik Dergisi 7/2 (Haziran 2017), 696-705.
JAMA Kayaalp F. Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:696–705.
MLA Kayaalp, Fatih. “Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 2, 2017, ss. 696-05.
Vancouver Kayaalp F. Telekomünikasyon Sektöründe Müşteri Ayrılma Tahmin Analizi Çalışmaları Derlemesi. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(2):696-705.