Altıgen Egzoz Eşanjöründe Termoelektrik Jeneratör Modüllerinin Kullanımının Deneysel ve Sayısal Analizi
Yıl 2021,
Cilt: 11 Sayı: 1, 54 - 60, 09.06.2021
Beytullah Erdogan
,
Kağan Duran
,
İbrahim Zengin
Öz
Günümüzde trafikteki şehirlerde içten yanmalı motorlar bulunan milyonlarca araç fosil yakıt kaynaklı emisyonlarıyla çevreyi kötü etkiliyorlar. Zararlı kirletici gazların yanı sıra, içten yanmalı motorlarda egzozdan büyük miktarda enerji de kaybedilir. İleri teknolojik uygulamalarla egzozdan gazlarla birlikte çıkan atık ısının bir kısmını geri kazanmak mümkündür. Termoelektrik jeneratörlerle (TEJ) egzoz atık ısısından elektrik üretimi, son zamanlarda birçok çalışmanın yapıldığı, popüler bir enerji geri kazanım uygulama alanıdır. TEJ’ler, sıcak kaynak ve bir soğutucuya dokunarak yüzeyler arasındaki sıcaklık farkından elektrik üreten özel yarı iletken malzemelerdir. Atık ısının bir kısmının geri kazanılması, birim enerji üretimine düşen kirlilik oranının azalmasına katkı sağladığından son derece önemlidir. Bu çalışmada, alüminyum malzemeden imal edilmiş altıgen egzoz eşanjörü ve sıvı soğutucu akışkan dolaştırılan bakır soğutma blokları arasına yerleştirilen 24 adet TEJ modülleri ile Termoelektrik jeneratör uygulaması deneysel olarak incelenmiştir. Model, motor soğutma sistemine benzer bir soğutma sistemi ile soğutulmuştur. Soğutucu akışkan olarak saf su (%100) ve etilen glikol-saf su (%50-50) kullanılmış ve akışkan etkisi araştırılmıştır. Fanın sürekli çalıştığı ve soğutma sıvısı olarak Etilen Glikol-Saf Su (%50-50) kullanıldığı durumlarda 10.678W elektrik üretilmiştir. Ayrıca imal edilen model geometrisi üzerinde CFD programı aracılığıyla eşanjörün akışkan hacminin merkezine yerleştirilen dağıtıcıların enerji üretiminin arttırılabileceği durumlar incelenmiştir. Dağıtıcılar TEJ’lerin yerleştirildiği yüzey sıcaklığını arttırmıştır.
Destekleyen Kurum
Zonguldak Bülent Ecevit Üniversitesi
Proje Numarası
2019-77654622-02
Kaynakça
- Bolatlı, G. 2019. Termoelektrik modül ile atık ısıdan elektrik üreten bir sistem uygulaması. Yüksek Lisans Tezi, Sakarya Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, Otomotiv Mühendisliği Anabilim Dalı Sakarya, 72s.
- Cherkez, Radion. 2003. Energy Characteristics of Permeable Thermoelements, Jour. Elec. Materials, 42(7); 480 - 483. Doi: 10.1109/ICT.2003.1287552.
- Deng, Y., Chunhua, L., and Panqi, C. 2016. Research on Integration of Automotive Exhaust-Based Thermoelectric Generator with Front Muffler. Conference SAE 2016 World Congress and Exhibition. doi: 10.4271/2016-01-0203
- Hatami, M, and Ganji, DD. 2015. Experimental Investigations of Diesel Exhaust Exergy Recovery Using Delta Winglet Vortex Generator Heat Exchanger. Int. J. Therm. Sci. 93 : 52–63. Doi.org/10.14741/Ijcet/22774106
- Ioffe, AF., Stil'bans, LS., Iordanishvili, EK., Stavitskaya TS., and Gelbtuch A. 1959. Semiconductor Thermoelements and Thermoelectric Cooling, Physics Today, 12 (5): 42-47, Doi.org/10.1063/1.3060810
- Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., and Ismail, M. 2019. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, Doi:10.1016/j.egyr.2019.12.011
- Kim, T. Y., Kwak, J., and Kim, B. 2018. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach. Energy Conv. Man., 160: 14–21. Doi:0.1016/j.enconman.2018.01.032
- Korotkov, AS., Loboda VV., Makarov SB., and Feldhoff, A. 2017. Modeling Thermoelectric Generators Using the ANSYS Software Platform: Methodology, Practical Applications, and Prospects. Russian Microelectronics, 46(2):131–38. Doi:10.1134/S1063739717020056
- Kumar, A., Ajay S., and Ashish V. 2018. Study on Exhaust Heat Exchanger for Enhancement of Thermoelectric Power Generation by CFD, IOSR-Jour. MCE 15(5):74–85. Doi:10.9790/1684-1505017485
- Li, W., Paul MC., Siviter J., Montecucco, Knox AR., Sweet, T., Min, G. 2016. Thermal Performance of Two Heat Exchangers for Thermoelectric Generators. Case Studies Ther. Eng. 8:164–75 https://doi.org/10.1016/j.csite.2016.06.008
- Lin, CX., and Kiflemariam, R. 2019. Numerical Simulation and Validation of Thermoelectric Generator Based Self-Cooling System with Airflow. Energies 12:40-52. Doi:10.3390/en12214052
- Liu X., Deng YD., Zhang K., Xu M., Xu Y., and Su CQ. 2014. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Applied Ther. Eng., 71, 364-370, http://dx.doi.org/10.1016/j.applthermaleng.2014.07.022.
- Nour, EA., Sara, H., Chalet, D., Faure, X., Aixala, L., and Cormerais, M. 2019. Modeling and Simulation of a Thermoelectric Generator Using Bismuth Telluride for Waste Heat Recovery in Automotive Diesel Engines. Jour. Elec. Material 48:2036–2045 Doi:10.1007/s11664-019-06999-w
- Orr, B., Akbarzadeh, A., and Lappas, P. 2017. An exhaust heat recovery system utilizing thermoelectric generators and heat pipes. Applied Ther. Eng., 126:1185–1190. Doi.org/10.1016/j.applthermaleng.2016.11.019
- Ravi, B., Surendra, B., and Abhishek, S. 2017. CFD Analysis of Exhaust Heat Exchanger for Thermo-Electric. J. Int. Eng. Heat Gen. Power, 6 (8):62–73. Doi:10.5281/zenodo.839119
- Su, CQ., Wang, WS., Liu, X., and Deng, YD. 2014. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Studies Ther. Eng., 4:85–91. Doi:10.1016/j.csite.2014.06.002
- Temizer, İ. 2014. Termoelektrik jeneratörü kullanılan taşıtlarda egzoz gazlarından elektrik üretilmesi. Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elazığ, 168s
- Topalcı, Ü. 2017. Taşıt egzoz gazı atık ısı enerjisinden elektrik enerjisinin üretilmesi için termo elektrik jeneratörün modellenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı, Isparta, 150s
- Nozariasbmarz, A., Krasinski, JS., & Vashaee, D. 2019. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications. Materials, 12(9),:15-29. Doi:10.1109/SPEC.2016.7846134
- Zhang, Y., Martin, C., Xiaowei, W., Nicholas, K., Luke, S., Jian, Y., Giri, J., and Lakshmikanth, M. 2015. High-Temperature and High-Power-Density Nanostructured Thermoelectric Generator for Automotive Waste Heat Recovery. Energy Conv. Man. 9:46–50. http://dx.doi.org/10.1016/j.enconman.2015.08.051
- Ziółkowski, A., Fuć, P., and Dobrzyński, M. 2019. Analysis of the construction of TEG thermoelectric generator using. CFD AIP Conference Proceedings 2078, 020052. https://doi.org/10.1063/1.5092055
- Ziolkowski, A. 2017. Automotive Thermoelectric Generator Impact on the Efficiency of a Drive System with a Combustion Engine. MATEC Conferences 118. https://doi.org/10.1051/matecconf/201711800024.
Experimental and Numerical Analysis of Using Thermoelectric Generator Modules on Hexagonal Exhaust Heat Exchanger
Yıl 2021,
Cilt: 11 Sayı: 1, 54 - 60, 09.06.2021
Beytullah Erdogan
,
Kağan Duran
,
İbrahim Zengin
Öz
Nowadays, many vehicles have internal combustion engines. In the cities, millions of vehicles affect badly the environment with their emissions due to fossil fuel. Besides of harmful pollution gases, a huge amount of energy is lost from the exhaust on internal combustion engines. It is possible to recover some part of the waste heat from the exhaust duct with advanced technological applications. Electricity generation from vehicle exhaust waste heat with thermoelectric generators is a highly attractive energy recovery application area in which many studies have been done recently. Thermoelectric generators are special semiconductor materials that produce electricity from the temperature difference between the surfaces by touching the hot source and heat sink. Recovering some part of the waste heat is extremely important in terms of contributing to reducing the pollution rate to unit energy production. In this study, the Thermoelectric generator application was investigated experimentally with a hexagonal exhaust heat exchanger manufactured using aluminum material and 24 pieces TEG (Thermoelectric Generator) modules placed between liquid fluid copper cooling blocks and aluminum exchanger. The model was cooled by a cooling system similar to the engine cooling system. Pure water (100%) and ethylene glycol-pure water (50-50%) were used as a coolant fluid and the type of fluid effect was investigated. In cases which the fan is constantly running and Ethylene Glycol-Pure Water (50-50%) is used as the cooling fluid, 10,678W electricity was generated. In addition, it was determined that the energy-production increases with a deflector which was located to the exchanger's fluid volume center via the ANSYS CFD program on the manufactured model geometry. In the analyzes, it was revealed that the deflector increased the temperatures on the surfaces that TEG modules are placed.
Proje Numarası
2019-77654622-02
Kaynakça
- Bolatlı, G. 2019. Termoelektrik modül ile atık ısıdan elektrik üreten bir sistem uygulaması. Yüksek Lisans Tezi, Sakarya Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, Otomotiv Mühendisliği Anabilim Dalı Sakarya, 72s.
- Cherkez, Radion. 2003. Energy Characteristics of Permeable Thermoelements, Jour. Elec. Materials, 42(7); 480 - 483. Doi: 10.1109/ICT.2003.1287552.
- Deng, Y., Chunhua, L., and Panqi, C. 2016. Research on Integration of Automotive Exhaust-Based Thermoelectric Generator with Front Muffler. Conference SAE 2016 World Congress and Exhibition. doi: 10.4271/2016-01-0203
- Hatami, M, and Ganji, DD. 2015. Experimental Investigations of Diesel Exhaust Exergy Recovery Using Delta Winglet Vortex Generator Heat Exchanger. Int. J. Therm. Sci. 93 : 52–63. Doi.org/10.14741/Ijcet/22774106
- Ioffe, AF., Stil'bans, LS., Iordanishvili, EK., Stavitskaya TS., and Gelbtuch A. 1959. Semiconductor Thermoelements and Thermoelectric Cooling, Physics Today, 12 (5): 42-47, Doi.org/10.1063/1.3060810
- Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., and Ismail, M. 2019. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, Doi:10.1016/j.egyr.2019.12.011
- Kim, T. Y., Kwak, J., and Kim, B. 2018. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach. Energy Conv. Man., 160: 14–21. Doi:0.1016/j.enconman.2018.01.032
- Korotkov, AS., Loboda VV., Makarov SB., and Feldhoff, A. 2017. Modeling Thermoelectric Generators Using the ANSYS Software Platform: Methodology, Practical Applications, and Prospects. Russian Microelectronics, 46(2):131–38. Doi:10.1134/S1063739717020056
- Kumar, A., Ajay S., and Ashish V. 2018. Study on Exhaust Heat Exchanger for Enhancement of Thermoelectric Power Generation by CFD, IOSR-Jour. MCE 15(5):74–85. Doi:10.9790/1684-1505017485
- Li, W., Paul MC., Siviter J., Montecucco, Knox AR., Sweet, T., Min, G. 2016. Thermal Performance of Two Heat Exchangers for Thermoelectric Generators. Case Studies Ther. Eng. 8:164–75 https://doi.org/10.1016/j.csite.2016.06.008
- Lin, CX., and Kiflemariam, R. 2019. Numerical Simulation and Validation of Thermoelectric Generator Based Self-Cooling System with Airflow. Energies 12:40-52. Doi:10.3390/en12214052
- Liu X., Deng YD., Zhang K., Xu M., Xu Y., and Su CQ. 2014. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Applied Ther. Eng., 71, 364-370, http://dx.doi.org/10.1016/j.applthermaleng.2014.07.022.
- Nour, EA., Sara, H., Chalet, D., Faure, X., Aixala, L., and Cormerais, M. 2019. Modeling and Simulation of a Thermoelectric Generator Using Bismuth Telluride for Waste Heat Recovery in Automotive Diesel Engines. Jour. Elec. Material 48:2036–2045 Doi:10.1007/s11664-019-06999-w
- Orr, B., Akbarzadeh, A., and Lappas, P. 2017. An exhaust heat recovery system utilizing thermoelectric generators and heat pipes. Applied Ther. Eng., 126:1185–1190. Doi.org/10.1016/j.applthermaleng.2016.11.019
- Ravi, B., Surendra, B., and Abhishek, S. 2017. CFD Analysis of Exhaust Heat Exchanger for Thermo-Electric. J. Int. Eng. Heat Gen. Power, 6 (8):62–73. Doi:10.5281/zenodo.839119
- Su, CQ., Wang, WS., Liu, X., and Deng, YD. 2014. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Studies Ther. Eng., 4:85–91. Doi:10.1016/j.csite.2014.06.002
- Temizer, İ. 2014. Termoelektrik jeneratörü kullanılan taşıtlarda egzoz gazlarından elektrik üretilmesi. Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Elazığ, 168s
- Topalcı, Ü. 2017. Taşıt egzoz gazı atık ısı enerjisinden elektrik enerjisinin üretilmesi için termo elektrik jeneratörün modellenmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı, Isparta, 150s
- Nozariasbmarz, A., Krasinski, JS., & Vashaee, D. 2019. N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications. Materials, 12(9),:15-29. Doi:10.1109/SPEC.2016.7846134
- Zhang, Y., Martin, C., Xiaowei, W., Nicholas, K., Luke, S., Jian, Y., Giri, J., and Lakshmikanth, M. 2015. High-Temperature and High-Power-Density Nanostructured Thermoelectric Generator for Automotive Waste Heat Recovery. Energy Conv. Man. 9:46–50. http://dx.doi.org/10.1016/j.enconman.2015.08.051
- Ziółkowski, A., Fuć, P., and Dobrzyński, M. 2019. Analysis of the construction of TEG thermoelectric generator using. CFD AIP Conference Proceedings 2078, 020052. https://doi.org/10.1063/1.5092055
- Ziolkowski, A. 2017. Automotive Thermoelectric Generator Impact on the Efficiency of a Drive System with a Combustion Engine. MATEC Conferences 118. https://doi.org/10.1051/matecconf/201711800024.