Araştırma Makalesi
BibTex RIS Kaynak Göster

TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları

Yıl 2022, Cilt: 12 Sayı: 1, 1 - 8, 01.06.2022

Öz

Elmas-benzeri karbon (EBK) filmler gösterdikleri mekanik ve fiziksel özelliklerinden dolayı en çok çalışılan kaplama malzemeleridir.
Bu filmlerin özelliklerinin iyileştirilmesi için üretim yöntemleri ve katkılanmaları üzerine pek çok çalışma yapılmıştır. Üretim yöntemleri
arasında elektrokimyasal biriktirme yöntemi, kolaylık ve ucuz ekipman gibi avantajlara sahiptir. Daha önceki bir çalışmamızda,
titanyum metalini hidrojen peroksit (H2O2) içerisinde çözündürerek elde ettiğimiz titanyum çözeltisi ile metanol (CH3OH)
karışımından, elektrokimyasal yöntemle titanyum dioxide (TiO2) katkılı EBK film üretmeyi başarmıştık. Bu çalışmada ise TiO2 katkılı
EBK filmler titanyum isopropoxide (TTIP) ve metanol karışımından oluşturulan çözeltilerin elektrolizi ile biriktirildi. İki farklı
TTIP konsantrasyonunda üretilen filmler, morfolojik, yapısal ve elementel olarak karakterize edildi. Taramalı elektron mikroskobu
fotoğrafları filmlerin homojen ve kompakt olduğunu göstermiştir. Filmlerin 600 0C ‘de tavlanmasıyla filmlerin morfolojisinde bir
değişiklik gözlenmemiştir. X-ışınları fotoelektron spektroskopisi analizleri, titanyumun film içerisinde TiO2 formunda olduğunu
ve TTIP konsantrasyonunun artmasıyla filmdeki titanyum miktarının arttığını göstermiştir. X-ışınları kırınımı analizleri, TiO2’nin
EBK matriste amorf olarak bulunduğunu ve daha düşük TTIP konsantrasyonuyla hazırlanan filmin elmas içeriğe sahip olduğunu
ortaya koymuştur. 600 0C de tavlandıktan sonra ise bu filmin grafitize olduğu görülmüştür. Elde edilen bulgular, TiO2 katkılı EBK
nanokompozit filmlerin bu çalışmada önerilen çözeltiyle kolaylıkla üretilebileceğini göstermiştir.

Destekleyen Kurum

Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2015-75737790-03

Teşekkür

Bu çalışma Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2015-75737790-03 numaralı proje ile desteklenmiştir.

Kaynakça

  • Amin, M. S., Randeniya, L. K., Bendavid, A., Martin, P. J., Preston, E. W. 2009. Diamond & Related Materials Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diam. Relat. Mater., 18(9): 1139–1144. Doi:10.1016/j.diamond.2009.02.034
  • Basman, N., Aslan, N., Uzun, O., Cankaya, G., Kolemen, U. 2015. Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectron. Eng., 140: 18–22. Doi:10.1016/j.mee.2015.05.001
  • Basman, N., Uzun, R., Gocer, E., Bacaksiz, E., Kolemen, U. 2018. Electrodeposition of Si–DLC nanocomposite film and its electronic application. Microsyst. Technol., 24(5): 2287–2294. Doi:10.1007/s00542-017-3635-y
  • Basman, N., Varol, S. F. 2019. High Temperature Characterization of a MIS Schottky Diode Based on Diamond-Like Carbon Nanocomposite Film. J. Electron. Mater., 48(12): 7874–7881. Doi:10.1007/s11664-019-07621-9
  • Basman, N. 2020. TiO2 Katkılı Elmas-Benzeri Karbon Nanokompozit Filmin Elektrokimyasal Yöntemle Biriktirilmesi. Karaelmas Fen ve Müh. Derg., 10: 94-99. Doi: 10.7212/zkufbd.v10i1.1373
  • Bharti, B., Kumar, S., Lee, H. N., Kumar, R. 2016. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports., 6: 1–12. Doi:10.1038/srep32355
  • Bootkul, D., Saenphinit, N., Supsermpol, B., Aramwit, C., Intarasiri, S. 2014. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement. Appl. Surf. Sci., 310: 293–299. Doi:10.1016/j.apsusc.2014.04.053
  • Bouabibsa, I., Alhussein, A., Lamri, S., Sanchette, F., Rtimi, S. 2020. Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environ. Sci. Pollut Res. Int., 27(25): 31120–31129. Doi:10.1007/s11356-020-09376-x
  • Caschera, D., Federici, F., Pandolfi, L., Kaciulis, S., Sebastiani, M., Bemporad, E., Padeletti, G. 2011. Effect of composition on mechanical behaviour of diamond-like carbon coatings modified with titanium. Thin Solid Films, 519(10): 3061–3067. Doi:10.1016/j.tsf.2010.12.031
  • Chen, S. Y., Ou, K. L., Huang, W. C., Chu, K. T., Ou, S. F. 2013. Phase transformation of diamond-like carbon/silver composite films by sputtering deposition. Ceram. Intern., 39(3): 2575–2580. Doi:10.1016/j.ceramint.2012.09.019
  • Chen, X., Kuo, D. H., Lu, D. 2017. Visible light response and superior dispersed S-doped TiO2 nanoparticles synthesized via ionic liquid. Adv. Powder Technol., 28(4): 1213–1220. Doi:10.1016/j.apt.2017.02.007
  • Dai, W., Ke, P., Wang, A. 2013. Influence of bias voltage on microstructure and properties of Al-containing diamond-like carbon films deposited by a hybrid ion beam system. Surf. Coat. Technol., 229: 217–221. Doi:10.1016/j.surfcoat.2012.03.076
  • Ennaceri, H., Boujnah, M., Taleb, A., Khaldoun, A., Sáez-Araoz, R., Ennaoui, A., El Kenz, A., Benyoussef, A. 2017. Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study. Int. J. Hydrog. Energy, 42(30): 19467–19480. Doi:10.1016/j.ijhydene.2017.06.015
  • Erdemir, A., Donnet, C. 2006. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys., 39(18): 311–327. Doi:10.1088/0022-3727/39/18/R01
  • He, Z., Que, W., Chen, J., He, Y., Wang, G. 2013. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. J. Phys. Chem. Solids 74(7): 924–928. Doi:10.1016/j.jpcs.2013.02.001
  • Isildak, O., Özbek, O. 2020. Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. 1-14. Doi: 10.1080/10408347.2019.1711013
  • Khun, N. W., Liu, E., Zeng, X. T. 2009. Corrosion behavior of nitrogen doped diamond-like carbon thin films in NaCl solutions. Corros. Sci., 51(9): 2158–2164. Doi:10.1016/j.corsci.2009.05.050
  • Lin, Y. T., Weng, C. H., Lin, Y. H., Shiesh, C. C., Chen, F. Y. 2013. Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep. Purif. Technol., 116: 114–123. Doi:10.1016/j.seppur.2013.05.018
  • Lopes, F. S., Oliveira, J. R., Milani, J., Oliveira, L. D., Machado, J. P. B., Trava-Airoldi, V. J., Lobo, A. O., Marciano, F. R. 2017. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation. Mater. Sci. Eng. C, 81(May): 373–379. Doi:10.1016/j.msec.2017.07.043
  • Ma, Y., Han, L., Ma, H., Wang, J., Liu, J., Cheng, L., Yang, J., Zhang, Q. 2017. Improving the visible-light photocatalytic activity of interstitial carbon-doped TiO 2 with electron-withdrawing bidentate carboxylate ligands. Catal. Commun., 95: 1–5. Doi:10.1016/j.catcom.2017.02.025
  • Marciano, F. R., Lima-Oliveira, D. A., Da-Silva, N. S., Diniz, A. V., Corat, E. J., Trava-Airoldi, V. J. 2009. Antibacterial activity of DLC films containing TiO2 nanoparticles. J. Colloid Interface Sci., 340(1): 87–92. Doi:10.1016/j.jcis.2009.08.024
  • Nezar, S., Saoula, N., Sali, S., Faiz, M., Mekki, M., Laoufi, N. A., Tabet, N. 2017. Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates. Appl. Surf. Sci., 395: 172–179. doi:10.1016/j.apsusc.2016.08.125
  • Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W. 2009. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B . Environ., 91(1–2): 355–361. Doi:10.1016/j.apcatb.2009.06.001
  • Robertson, J. 2002. Diamond-like amorphous carbon.pdf. Mater. Sci. Eng. R Rep., 37: 129–281. Doi:10.1016/S0927-796X(02)00005-0
  • Sullivan, J. A., Neville, E. M., Herron, R., Thampi, K. R., Macelroy, J. M. D. 2014. Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors. J. Photochem. Photobiol. A, 289: 60–65. Doi:10.1016/j.jphotochem.2014.05.009
  • Thorwarth, G., Hammerl, C., Kuhn, M., Assmann, W., Schey, B., Stritzker, B. 2005. Investigation of DLC synthesized by plasma immersion ion implantation and deposition. Surf. Coat. Technol., 193(1-3 SPEC. ISS.): 206–212. Doi:10.1016/j.surfcoat.2004.07.061
  • Wachesk, C. C., Pires, C. A. F., Ramos, B. C., Trava-Airoldi, V. J., Lobo, A. O., Pacheco-Soares, C., Marciano, F. R., Da-Silva, N. S. 2013. Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Appl. Surf. Sci., 266: 176–181. Doi:10.1016/j.apsusc.2012.11.124
  • Wachesk, C. C., Trava-Airoldi, V. J., Da-Silva, N. S., Lobo, A. O., Marciano, F. R. 2016. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications. J. Nanomater., 2016: 8194516. Doi:10.1155/2016/8194516
  • Warkhade, S. K., Gaikwad, G. S., Zodape, S. P., Pratap, U., Maldhure, A. V., Wankhade, A. V. 2017. Low temperature synthesis of pure anatase carbon doped titanium dioxide: An efficient visible light active photocatalyst. Mater. Sci. Semicond Process., 63: 18–24. Doi:10.1016/j.mssp.2017.01.011
  • Xu, W., Zhou, K. S., Lin, S., Dai, M., Shi, Q., Wei, C. 2018. Structural properties of hydrogenated Al-doped diamond-like carbon films fabricated by a hybrid plasma system. Diam. Relat. Mater., 87(June): 177–185. Doi:10.1016/j.diamond.2018.06.012
  • Y. Huang, W. Ho, S. Lee, L. Zahng, Y. Li, J. Y. 2008. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx. Langmuir, 24(7): 3510-3516. Doi: 10.1021/la703333z
  • Yan, X. B., Xu, T., Yang, S. R., Liu, H. W., Xue, Q. J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J. Phys. D: Appl. Phys., 37(17): 2416–2424. Doi:10.1088/0022-3727/37/17/012
  • Yu, Y., & Zhang, J. 2009. Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films. Solid State Sci., 11(11), 1929–1932. Doi:10.1016/j.solidstatesciences.2009.07.012

Deposition of TiO2-Doped Diamond-Like Carbon Films From a New Solution and Their Characterizations

Yıl 2022, Cilt: 12 Sayı: 1, 1 - 8, 01.06.2022

Öz

Diamond-like carbon (DLC) films are the most studied coating materials due to their mechanical and physical properties. Many
studies have been conducted on the deposition methods and doping to improve the properties of these films. Among the deposition
methods, the electrochemical deposition has advantages such as convenience and inexpensive equipment. In our previous study, we
were able to produce a titanium dioxide (TiO2) doped DLC film by electrochemical method from a mixture of methanol (CH3OH)
and titanium solution obtained by dissolving titanium metal in hydrogen peroxide (H2O2). In this study, TiO2 doped DLC films were
deposited by electrolysis of solutions formed from a mixture of titanium isopropoxide (TTIP) and methanol. The films deposited at
two different TTIP concentrations were characterized morphologically, structurally and elementally. Scanning electron micrographs
were shown that the films are homogeneous and compact. No change was observed in the morphology of the films after annealing
the films at 600 0C. Chemical analyses showed that titanium was in the form of TiO2 and the amount of titanium increased with
increasing TTIP concentration. X-ray diffraction analysis revealed that TiO2 was amorphous in the DLC matrix and the film prepared
with lower TTIP concentration had diamond content. After annealing at 600 0C, it was seen that this film was graphitized. The
obtained findings showed that TiO2 doped DLC nanocomposite films can be easily deposited with the solution proposed in this study.

Proje Numarası

2015-75737790-03

Kaynakça

  • Amin, M. S., Randeniya, L. K., Bendavid, A., Martin, P. J., Preston, E. W. 2009. Diamond & Related Materials Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diam. Relat. Mater., 18(9): 1139–1144. Doi:10.1016/j.diamond.2009.02.034
  • Basman, N., Aslan, N., Uzun, O., Cankaya, G., Kolemen, U. 2015. Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectron. Eng., 140: 18–22. Doi:10.1016/j.mee.2015.05.001
  • Basman, N., Uzun, R., Gocer, E., Bacaksiz, E., Kolemen, U. 2018. Electrodeposition of Si–DLC nanocomposite film and its electronic application. Microsyst. Technol., 24(5): 2287–2294. Doi:10.1007/s00542-017-3635-y
  • Basman, N., Varol, S. F. 2019. High Temperature Characterization of a MIS Schottky Diode Based on Diamond-Like Carbon Nanocomposite Film. J. Electron. Mater., 48(12): 7874–7881. Doi:10.1007/s11664-019-07621-9
  • Basman, N. 2020. TiO2 Katkılı Elmas-Benzeri Karbon Nanokompozit Filmin Elektrokimyasal Yöntemle Biriktirilmesi. Karaelmas Fen ve Müh. Derg., 10: 94-99. Doi: 10.7212/zkufbd.v10i1.1373
  • Bharti, B., Kumar, S., Lee, H. N., Kumar, R. 2016. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports., 6: 1–12. Doi:10.1038/srep32355
  • Bootkul, D., Saenphinit, N., Supsermpol, B., Aramwit, C., Intarasiri, S. 2014. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement. Appl. Surf. Sci., 310: 293–299. Doi:10.1016/j.apsusc.2014.04.053
  • Bouabibsa, I., Alhussein, A., Lamri, S., Sanchette, F., Rtimi, S. 2020. Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environ. Sci. Pollut Res. Int., 27(25): 31120–31129. Doi:10.1007/s11356-020-09376-x
  • Caschera, D., Federici, F., Pandolfi, L., Kaciulis, S., Sebastiani, M., Bemporad, E., Padeletti, G. 2011. Effect of composition on mechanical behaviour of diamond-like carbon coatings modified with titanium. Thin Solid Films, 519(10): 3061–3067. Doi:10.1016/j.tsf.2010.12.031
  • Chen, S. Y., Ou, K. L., Huang, W. C., Chu, K. T., Ou, S. F. 2013. Phase transformation of diamond-like carbon/silver composite films by sputtering deposition. Ceram. Intern., 39(3): 2575–2580. Doi:10.1016/j.ceramint.2012.09.019
  • Chen, X., Kuo, D. H., Lu, D. 2017. Visible light response and superior dispersed S-doped TiO2 nanoparticles synthesized via ionic liquid. Adv. Powder Technol., 28(4): 1213–1220. Doi:10.1016/j.apt.2017.02.007
  • Dai, W., Ke, P., Wang, A. 2013. Influence of bias voltage on microstructure and properties of Al-containing diamond-like carbon films deposited by a hybrid ion beam system. Surf. Coat. Technol., 229: 217–221. Doi:10.1016/j.surfcoat.2012.03.076
  • Ennaceri, H., Boujnah, M., Taleb, A., Khaldoun, A., Sáez-Araoz, R., Ennaoui, A., El Kenz, A., Benyoussef, A. 2017. Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study. Int. J. Hydrog. Energy, 42(30): 19467–19480. Doi:10.1016/j.ijhydene.2017.06.015
  • Erdemir, A., Donnet, C. 2006. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys., 39(18): 311–327. Doi:10.1088/0022-3727/39/18/R01
  • He, Z., Que, W., Chen, J., He, Y., Wang, G. 2013. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. J. Phys. Chem. Solids 74(7): 924–928. Doi:10.1016/j.jpcs.2013.02.001
  • Isildak, O., Özbek, O. 2020. Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. 1-14. Doi: 10.1080/10408347.2019.1711013
  • Khun, N. W., Liu, E., Zeng, X. T. 2009. Corrosion behavior of nitrogen doped diamond-like carbon thin films in NaCl solutions. Corros. Sci., 51(9): 2158–2164. Doi:10.1016/j.corsci.2009.05.050
  • Lin, Y. T., Weng, C. H., Lin, Y. H., Shiesh, C. C., Chen, F. Y. 2013. Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep. Purif. Technol., 116: 114–123. Doi:10.1016/j.seppur.2013.05.018
  • Lopes, F. S., Oliveira, J. R., Milani, J., Oliveira, L. D., Machado, J. P. B., Trava-Airoldi, V. J., Lobo, A. O., Marciano, F. R. 2017. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation. Mater. Sci. Eng. C, 81(May): 373–379. Doi:10.1016/j.msec.2017.07.043
  • Ma, Y., Han, L., Ma, H., Wang, J., Liu, J., Cheng, L., Yang, J., Zhang, Q. 2017. Improving the visible-light photocatalytic activity of interstitial carbon-doped TiO 2 with electron-withdrawing bidentate carboxylate ligands. Catal. Commun., 95: 1–5. Doi:10.1016/j.catcom.2017.02.025
  • Marciano, F. R., Lima-Oliveira, D. A., Da-Silva, N. S., Diniz, A. V., Corat, E. J., Trava-Airoldi, V. J. 2009. Antibacterial activity of DLC films containing TiO2 nanoparticles. J. Colloid Interface Sci., 340(1): 87–92. Doi:10.1016/j.jcis.2009.08.024
  • Nezar, S., Saoula, N., Sali, S., Faiz, M., Mekki, M., Laoufi, N. A., Tabet, N. 2017. Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates. Appl. Surf. Sci., 395: 172–179. doi:10.1016/j.apsusc.2016.08.125
  • Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W. 2009. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B . Environ., 91(1–2): 355–361. Doi:10.1016/j.apcatb.2009.06.001
  • Robertson, J. 2002. Diamond-like amorphous carbon.pdf. Mater. Sci. Eng. R Rep., 37: 129–281. Doi:10.1016/S0927-796X(02)00005-0
  • Sullivan, J. A., Neville, E. M., Herron, R., Thampi, K. R., Macelroy, J. M. D. 2014. Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors. J. Photochem. Photobiol. A, 289: 60–65. Doi:10.1016/j.jphotochem.2014.05.009
  • Thorwarth, G., Hammerl, C., Kuhn, M., Assmann, W., Schey, B., Stritzker, B. 2005. Investigation of DLC synthesized by plasma immersion ion implantation and deposition. Surf. Coat. Technol., 193(1-3 SPEC. ISS.): 206–212. Doi:10.1016/j.surfcoat.2004.07.061
  • Wachesk, C. C., Pires, C. A. F., Ramos, B. C., Trava-Airoldi, V. J., Lobo, A. O., Pacheco-Soares, C., Marciano, F. R., Da-Silva, N. S. 2013. Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Appl. Surf. Sci., 266: 176–181. Doi:10.1016/j.apsusc.2012.11.124
  • Wachesk, C. C., Trava-Airoldi, V. J., Da-Silva, N. S., Lobo, A. O., Marciano, F. R. 2016. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications. J. Nanomater., 2016: 8194516. Doi:10.1155/2016/8194516
  • Warkhade, S. K., Gaikwad, G. S., Zodape, S. P., Pratap, U., Maldhure, A. V., Wankhade, A. V. 2017. Low temperature synthesis of pure anatase carbon doped titanium dioxide: An efficient visible light active photocatalyst. Mater. Sci. Semicond Process., 63: 18–24. Doi:10.1016/j.mssp.2017.01.011
  • Xu, W., Zhou, K. S., Lin, S., Dai, M., Shi, Q., Wei, C. 2018. Structural properties of hydrogenated Al-doped diamond-like carbon films fabricated by a hybrid plasma system. Diam. Relat. Mater., 87(June): 177–185. Doi:10.1016/j.diamond.2018.06.012
  • Y. Huang, W. Ho, S. Lee, L. Zahng, Y. Li, J. Y. 2008. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx. Langmuir, 24(7): 3510-3516. Doi: 10.1021/la703333z
  • Yan, X. B., Xu, T., Yang, S. R., Liu, H. W., Xue, Q. J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J. Phys. D: Appl. Phys., 37(17): 2416–2424. Doi:10.1088/0022-3727/37/17/012
  • Yu, Y., & Zhang, J. 2009. Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films. Solid State Sci., 11(11), 1929–1932. Doi:10.1016/j.solidstatesciences.2009.07.012
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Necati Başman 0000-0002-8421-641X

Mehmet Gökçen 0000-0003-3900-4626

Cengiz Temiz 0000-0002-9265-7485

Proje Numarası 2015-75737790-03
Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Başman, N., Gökçen, M., & Temiz, C. (2022). TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları. Karaelmas Fen Ve Mühendislik Dergisi, 12(1), 1-8. https://doi.org/10.7212/karaelmasfen.902067
AMA Başman N, Gökçen M, Temiz C. TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2022;12(1):1-8. doi:10.7212/karaelmasfen.902067
Chicago Başman, Necati, Mehmet Gökçen, ve Cengiz Temiz. “TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi Ve Karakterizasyonları”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 1 (Haziran 2022): 1-8. https://doi.org/10.7212/karaelmasfen.902067.
EndNote Başman N, Gökçen M, Temiz C (01 Haziran 2022) TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları. Karaelmas Fen ve Mühendislik Dergisi 12 1 1–8.
IEEE N. Başman, M. Gökçen, ve C. Temiz, “TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 1, ss. 1–8, 2022, doi: 10.7212/karaelmasfen.902067.
ISNAD Başman, Necati vd. “TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi Ve Karakterizasyonları”. Karaelmas Fen ve Mühendislik Dergisi 12/1 (Haziran 2022), 1-8. https://doi.org/10.7212/karaelmasfen.902067.
JAMA Başman N, Gökçen M, Temiz C. TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:1–8.
MLA Başman, Necati vd. “TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi Ve Karakterizasyonları”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 1, 2022, ss. 1-8, doi:10.7212/karaelmasfen.902067.
Vancouver Başman N, Gökçen M, Temiz C. TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(1):1-8.