The Five Dimensional Transformed Weyl–Yang–Kaluza–Klein Theory of Gravity
Yıl 2022,
Cilt: 12 Sayı: 2, 134 - 145, 24.12.2022
Halil Kuyrukcu
Öz
We study the case in which the five dimensional theory is the transformed Weyl–Yang–Kaluza–Klein gravity. The dimensionally reduced equations of motion are derived by considering an alternative form of the main equation of the theory in the coordinate basis. The conformal transformation rules are applied to the invariants. We also discuss the possible specific cases and the new Lorentz force density term, in detail.
Kaynakça
- Baekler, P., Yasskin, PB. 1984. All torsion-free spherical vacuum
solutions of the quadratic Poincaré gauge theory of gravity.
General Relativity and Gravitation, 16: 1135-1155. doi:
10.1007/BF00760237
- L., Bielecki, J., Cederwall, M., Nilsson, BEW., Persson, D.
2008. U-Duality and the compactified Gauss–Bonnet term.
Journal of High Energy Physics, 07: 048. doi: 10.1088/1126-
6708/2008/07/048
- Başkal, S. 1999. Radiation in Yang–Mills formulation of gravity
and a generalized pp-wave metric. Progress of Theoretical
Physics, 102 (4): 803-807. doi: 10.1143/PTP.102.803
- Başkal, S., Kuyrukcu, H. 2013. Kaluza–Klein reduction of a
quadratic curvature model. General Relativity and Gravitation,
45: 359-371. doi: 10.1007/s10714-012-1476-7
- Camenzind, M. 1975. On the curvature dynamics for metric
gravitational theories. Journal of Mathematical Physics, 16:
1023-1031. doi: 10.1063/1.522654
- Camenzind, M. 1975a. Theories of gravity with structuredependent
’s. Physical Review Letters, 35: 1188-1189. doi:
10.1103/PhysRevLett.35.1188
- Camenzind, M. 1977. On the Yang–Mills structure of
gravitation: A new issue of the final state. General Relativity
and Gravitation, 8: 103-108. doi: 10.1007/BF00770729
- Camenzind, M. 1978. Weak and strong sources of gravity: An
SO (1,3)-gauge theory of gravity. Physical Review D, 18: 1068.
doi: 10.1103/PhysRevD.18.1068
- Camenzind, M. 1978a. Homogeneous and isotropic world
models in the Yang–Mills dynamics of gravity: The structure
of the adiabats. Journal of Mathematical Physics, 19: 624-634.
doi: 10.1063/1.523693
- Carneiro, DF., Freiras, EA., Goncalves, B., de Lima AG.,
Shapiro IL. 2004. On useful conformal transformations in
general relativity. Gravitation and Cosmology, 10 (4): 305-312.
- Chen, P., Izumi, K., Tung, N-E. 2013. Natural emergence of
cosmological constant and dark radiation from the Stephenson–
Kilmister–Yang–Camenzind theory of gravity. Physical Review
D, 88 (12): 123006. doi: 10.1103/PhysRevD.88.123006
- Cook, RJ. 2008. The gravitational-electromagnetic analogy: A
possible solution to the vacuum-energy and dark-energy
problems. arXiv: gr-qc/0810.4495 (preprint).
- Cvetic, M., Gibbons, GW., Lu, H., Pope, CN. 2003. Consistent
group and coset reductions of the bosonic string. Classical
and Quantum Gravity, 20: 5161-5194. doi: 10.1088/0264-
9381/20/23/013
- Çelik, S. 2021. Compatibility of the dimensional reduction and
variation procedures for a quadratic curvature model with
a Kaluza–Klein ansatz. Master of Science, Middle East
Technical University, 92 p.
- Dabrowski, MP., Garecki, J., Blaschke, DB. 2009. Conformal
transformations and conformal invariance in gravitation.
Annalen der Physik, 18: 13-32. doi: 10.1002/andp.200810331
- Dean, BH. 1999. Variational results and solutions in gauge gravity
and a bifurcation analysis of black hole orbital dynamics.
Graduate Theses, West Virginia University, Source DAI-B
61/03.
- Dereli, T., Üçoluk, G. 1990. Kaluza–Klein reduction of
generalized theories of gravity and nonminimal gauge
couplings. Classical and Quantum Gravity, 7: 1109-1115. doi:
10.1088/0264-9381/7/7/009
- Eddington, AS. 1924. The Mathematical Theory of Relativity,
Cambridge University Press, Cambridge, pp. 141-144.
- Fairchild, JrEE. 1976. Gauge theory of gravitation. Physical
Review D, 14: 384-391. [erratum: 1976. Physical Review D,
14: 2833]. doi: 10.1103/PhysRevD.14.384
- Fairchild, JrEE. 1977. Yang–Mills formulation of gravitational
dynamics. Physical Review D, 16: 2438-2447. doi: 10.1103/
PhysRevD.16.2438
- Gibbons, GW., Wiltshire, DL. 1986. Black holes in Kaluza–
Klein Theory. Annals of Physics, 167: 201-223. doi: 10.1016/
S0003-4916(86)80012-4
- Hawking, SW., Ellis, GFR. 1999. The large scale structure of
space-time. Cambridge, UK, Cambridge University Press.
- Kaluza, Th. 1921. Zum unitätsproblem der physik. Sitzungsberichte
der Preussischen Akademie der Wissenschaften, K1: 966-972.
- Kilmister, CW., Newman, DJ., Bondi, H. 1961. The use
of algebraic structures in physics. Proceedings of the
Cambridge Philosophical Society, 57: 851. doi: 10.1017/
S0305004100036008
- Klein, O. 1926. Quantentheorie und fünfdimensionale
relativitätstheorie. Zeitschrift für Physik, 37 (2-3): 895-906.
doi: 10.1007/BF01397481
- Klein, O. 1926a. The atomicity of electricity as a quantum theory
law. Nature, 118: 516. doi: 10.1038/118516a0
- Kretschmann, E. 1915. Uber die prinzipielle bestimmbarkeit
der berechtigten bezugssysteme beliebiger relativitätstheorien
(I). Annalen der Physik, 353 (23): 907-942. doi: 10.1002/
andp.19153532303
- Kuyrukcu, H. 2013. PP-wave solutions of the Weyl–Yang
theory of gravity with a five-dimensional Kaluza–Klein
ansatz. Classical and Quantum Gravity, 30 (15): 155013. doi:
10.1088/0264-9381/30/15/155013
- Kuyrukcu, H. 2014. The non-Abelian Weyl–Yang–Kaluza–Klein
gravity model. General Relativity and Gravitation, 46: 1751.
doi: 10.1007/s10714-014-1751-x
- Kuyrukcu, H. 2016. A black hole solution of higher-dimensional
Weyl–Yang–Kaluza–Klein theory by the Wu–Yang ansatz.
arXiv: gr-qc/1602.02418v1 (preprint).
- Kuyrukcu, H. 2021. A black hole solution of higher-dimensional
Weyl–Yang–Kaluza–Klein theory. Classical and Quantum
Gravity, 38 (17): 175009. doi: 10.1088/1361-6382/ac161a
- Lanczos, C. 1938. A remarkable property of the Riemann–
Christoffel tensor in four dimensions. Annals of Mathematics,
39: 842-850. doi: 10.2307/1968467
- Lanczos, C. 1949. Lagrangian multiplier and Riemannian spaces.
Reviews of Modern Physics, 21 (3): 497-502. doi: 10.1103/
RevModPhys.21.497
- Lanczos, C. 1957. Electricity and general relativity. Reviews
of Modern Physics, 29 (3): 337-350. doi: 10.1103/
RevModPhys.29.337
- Lee, HC. 1983. An introduction to Kaluza–Klein theories:
Proceedings of the workshop on KaluzaKlein theories. Chalk
River, Canada, p. 187.
- Lichnerowicz, A. 1958. Sur un procedé de quantification du
champ de gravitation. C. R. Acad. Sci., 247: 433-436.
- Liu, H., Wesson, PS. 1997. The physical properties of charged
five-dimensional black holes. Classical and Quantum Gravity,
14 (7): 1651-1663. doi: 10.1088/0264-9381/14/7/006
- Loos, HG. 1963. Spin connection in general relativity. Annals of
Physics, 25: 91-108. doi: 10.1016/0003-4916(63)90335-X
- Loos, HG., Treat, RP. 1967. Conditional dynamic equivalence
of free Yang–Mills fields and free gravitational fields. Physics
Letters A, 26 (2): 91-92. doi: 10.1016/0375-9601(67)90117-X
- Mandel, H. 1926. Zur herleitung der feldgleichungen in der
allgemeinen relativitätstheorie. Zeitschrift für Physik, 39 (12):
136-145. doi: 10.1007/BF01321980
- Misner, CW., Thorne, KS., Wheeler, JA. 1973. Gravitation.
Freeman WH and company, San Francisco.
- Ni, W-T. 1975. Yang’s gravitational field equations. Physical Review
Letters, 35 (5): 319-320. [erratum: 1975. Physical Review
Letters, 35 (25): 1748. doi: 10.1103/PhysRevLett.35.1748].
doi: 10.1103/PhysRevLett.35.319
- Öktem, F. 1985. Doğa Bilim Dergisi A1(9): 3.
- Palatini, A. 1919. Deduzione invariantiva delle equazioni
gravitazionali dal principio di Hamilton. Rendiconti del
Circolo Matematico di Palermo, 43: 203-212. doi: 10.1007/
BF03014670
- Pauli, W. 1919. Zur theorie der gravitation und der elektrizitaät
von H Weyl. Physikalische Zeitschrift, 20: 457-467.
- Pavelle, R. 1974. Yang’s gravitational field equations. Physical
Review Letters, 33 (24): 1461-1463. doi: 10.1103/
PhysRevLett.33.1461
- Pavelle, R. 1975. Unphysical solutions of Yang’s gravitational field
equations. Physical Review Letters, 34: 1114. doi: 10.1103/
PhysRevLett.34.1114
- Pavelle, R. 1976. Unphysical characteristics of Yang’s pure-space
equations. Physical Review Letters, 37 (15): 961-964. doi:
10.1103/PhysRevLett.37.961
- Pavelle, R. 1978. Mansouri–Chang gravitation theory.
Physical Review Letters, 40 (5): 267-270. doi: 10.1103/
PhysRevLett.40.267
- Perry, M. 2009. Applications of Differential Geometry to Physics.
p. 36. https://sgielen.files.wordpress.com/2018/01/diffgeo.pdf
Pope, CN. Kaluza–Klein Theory. p. 4. http://people.physics.tamu.
edu/pope/ihplec.pdf
- Stephenson, G. 1958. Quadratic Lagrangians and general
relativity. ll Nuovo Cimento, 9 (2): 263-269. doi: 10.1007/
BF02724929
- Thompson, AH. 1975. Yang’s gravitational field equations.
Physical Review Letters, 34 (8): 507-508. doi: 10.1103/
PhysRevLett.34.507
- Thompson, AH. 1975a. Geometrically degenerate solutions of
the Kilmister–Yang equations. Physical Review Letters, 35 (5):
320-322. doi: 10.1103/PhysRevLett.35.320
- Weyl, H. 1918. Gravitation und elektrizität. Sitzungsberichte
der Königlich Preußischen Akademie der Wissenschaften
(Berlin), 1918: 465-478. doi: 10.1007/978-3-663-19510_811
- Weyl, H. 1919. A new extension of relativity theory. Annalen der
Physik, 59: 101-133. doi: 10.1002/andp.19193641002
- Weyl, H. 1921. Über die physikalischen grundlagen der
erweiterten relativitätstheorie. Physikalische Zeitschrift, 22:
473-480.
- Yang, CN., Mills, RL. 1954. Conservation of isotopic spin and
isotopic gauge invariance. Physical Review, 96 (1): 191-195.
doi: 10.1103/PhysRev.96.191
- Yang, CN. 1974. Integral formalism for gauge fields.
Physical Review Letters, 33 (7): 445-447. doi: 10.1103/
PhysRevLett.33.445
Beş Boyutlu Dönüştürülmüş Weyl–Yang–Kaluza–Klein Kütleçekim Teorisi
Yıl 2022,
Cilt: 12 Sayı: 2, 134 - 145, 24.12.2022
Halil Kuyrukcu
Öz
Beş boyutlu teorinin, dönüştürülmüş Weyl–Yang–Kaluza–Klein kütleçekim olduğu durum incelendi. Boyutsal olarak indirgenmiş hareket denklemleri, teorinin ana denkleminin alternatif formu düşünülerek koordinat bazında türetildi. Değişmezler için konformal dönüşüm kuralları uygulandı. Ayrıca olası özel durumlar ve yeni Lorentz kuvvet yoğunluğu terimi ayrıntılı olarak tartışıldı.
Kaynakça
- Baekler, P., Yasskin, PB. 1984. All torsion-free spherical vacuum
solutions of the quadratic Poincaré gauge theory of gravity.
General Relativity and Gravitation, 16: 1135-1155. doi:
10.1007/BF00760237
- L., Bielecki, J., Cederwall, M., Nilsson, BEW., Persson, D.
2008. U-Duality and the compactified Gauss–Bonnet term.
Journal of High Energy Physics, 07: 048. doi: 10.1088/1126-
6708/2008/07/048
- Başkal, S. 1999. Radiation in Yang–Mills formulation of gravity
and a generalized pp-wave metric. Progress of Theoretical
Physics, 102 (4): 803-807. doi: 10.1143/PTP.102.803
- Başkal, S., Kuyrukcu, H. 2013. Kaluza–Klein reduction of a
quadratic curvature model. General Relativity and Gravitation,
45: 359-371. doi: 10.1007/s10714-012-1476-7
- Camenzind, M. 1975. On the curvature dynamics for metric
gravitational theories. Journal of Mathematical Physics, 16:
1023-1031. doi: 10.1063/1.522654
- Camenzind, M. 1975a. Theories of gravity with structuredependent
’s. Physical Review Letters, 35: 1188-1189. doi:
10.1103/PhysRevLett.35.1188
- Camenzind, M. 1977. On the Yang–Mills structure of
gravitation: A new issue of the final state. General Relativity
and Gravitation, 8: 103-108. doi: 10.1007/BF00770729
- Camenzind, M. 1978. Weak and strong sources of gravity: An
SO (1,3)-gauge theory of gravity. Physical Review D, 18: 1068.
doi: 10.1103/PhysRevD.18.1068
- Camenzind, M. 1978a. Homogeneous and isotropic world
models in the Yang–Mills dynamics of gravity: The structure
of the adiabats. Journal of Mathematical Physics, 19: 624-634.
doi: 10.1063/1.523693
- Carneiro, DF., Freiras, EA., Goncalves, B., de Lima AG.,
Shapiro IL. 2004. On useful conformal transformations in
general relativity. Gravitation and Cosmology, 10 (4): 305-312.
- Chen, P., Izumi, K., Tung, N-E. 2013. Natural emergence of
cosmological constant and dark radiation from the Stephenson–
Kilmister–Yang–Camenzind theory of gravity. Physical Review
D, 88 (12): 123006. doi: 10.1103/PhysRevD.88.123006
- Cook, RJ. 2008. The gravitational-electromagnetic analogy: A
possible solution to the vacuum-energy and dark-energy
problems. arXiv: gr-qc/0810.4495 (preprint).
- Cvetic, M., Gibbons, GW., Lu, H., Pope, CN. 2003. Consistent
group and coset reductions of the bosonic string. Classical
and Quantum Gravity, 20: 5161-5194. doi: 10.1088/0264-
9381/20/23/013
- Çelik, S. 2021. Compatibility of the dimensional reduction and
variation procedures for a quadratic curvature model with
a Kaluza–Klein ansatz. Master of Science, Middle East
Technical University, 92 p.
- Dabrowski, MP., Garecki, J., Blaschke, DB. 2009. Conformal
transformations and conformal invariance in gravitation.
Annalen der Physik, 18: 13-32. doi: 10.1002/andp.200810331
- Dean, BH. 1999. Variational results and solutions in gauge gravity
and a bifurcation analysis of black hole orbital dynamics.
Graduate Theses, West Virginia University, Source DAI-B
61/03.
- Dereli, T., Üçoluk, G. 1990. Kaluza–Klein reduction of
generalized theories of gravity and nonminimal gauge
couplings. Classical and Quantum Gravity, 7: 1109-1115. doi:
10.1088/0264-9381/7/7/009
- Eddington, AS. 1924. The Mathematical Theory of Relativity,
Cambridge University Press, Cambridge, pp. 141-144.
- Fairchild, JrEE. 1976. Gauge theory of gravitation. Physical
Review D, 14: 384-391. [erratum: 1976. Physical Review D,
14: 2833]. doi: 10.1103/PhysRevD.14.384
- Fairchild, JrEE. 1977. Yang–Mills formulation of gravitational
dynamics. Physical Review D, 16: 2438-2447. doi: 10.1103/
PhysRevD.16.2438
- Gibbons, GW., Wiltshire, DL. 1986. Black holes in Kaluza–
Klein Theory. Annals of Physics, 167: 201-223. doi: 10.1016/
S0003-4916(86)80012-4
- Hawking, SW., Ellis, GFR. 1999. The large scale structure of
space-time. Cambridge, UK, Cambridge University Press.
- Kaluza, Th. 1921. Zum unitätsproblem der physik. Sitzungsberichte
der Preussischen Akademie der Wissenschaften, K1: 966-972.
- Kilmister, CW., Newman, DJ., Bondi, H. 1961. The use
of algebraic structures in physics. Proceedings of the
Cambridge Philosophical Society, 57: 851. doi: 10.1017/
S0305004100036008
- Klein, O. 1926. Quantentheorie und fünfdimensionale
relativitätstheorie. Zeitschrift für Physik, 37 (2-3): 895-906.
doi: 10.1007/BF01397481
- Klein, O. 1926a. The atomicity of electricity as a quantum theory
law. Nature, 118: 516. doi: 10.1038/118516a0
- Kretschmann, E. 1915. Uber die prinzipielle bestimmbarkeit
der berechtigten bezugssysteme beliebiger relativitätstheorien
(I). Annalen der Physik, 353 (23): 907-942. doi: 10.1002/
andp.19153532303
- Kuyrukcu, H. 2013. PP-wave solutions of the Weyl–Yang
theory of gravity with a five-dimensional Kaluza–Klein
ansatz. Classical and Quantum Gravity, 30 (15): 155013. doi:
10.1088/0264-9381/30/15/155013
- Kuyrukcu, H. 2014. The non-Abelian Weyl–Yang–Kaluza–Klein
gravity model. General Relativity and Gravitation, 46: 1751.
doi: 10.1007/s10714-014-1751-x
- Kuyrukcu, H. 2016. A black hole solution of higher-dimensional
Weyl–Yang–Kaluza–Klein theory by the Wu–Yang ansatz.
arXiv: gr-qc/1602.02418v1 (preprint).
- Kuyrukcu, H. 2021. A black hole solution of higher-dimensional
Weyl–Yang–Kaluza–Klein theory. Classical and Quantum
Gravity, 38 (17): 175009. doi: 10.1088/1361-6382/ac161a
- Lanczos, C. 1938. A remarkable property of the Riemann–
Christoffel tensor in four dimensions. Annals of Mathematics,
39: 842-850. doi: 10.2307/1968467
- Lanczos, C. 1949. Lagrangian multiplier and Riemannian spaces.
Reviews of Modern Physics, 21 (3): 497-502. doi: 10.1103/
RevModPhys.21.497
- Lanczos, C. 1957. Electricity and general relativity. Reviews
of Modern Physics, 29 (3): 337-350. doi: 10.1103/
RevModPhys.29.337
- Lee, HC. 1983. An introduction to Kaluza–Klein theories:
Proceedings of the workshop on KaluzaKlein theories. Chalk
River, Canada, p. 187.
- Lichnerowicz, A. 1958. Sur un procedé de quantification du
champ de gravitation. C. R. Acad. Sci., 247: 433-436.
- Liu, H., Wesson, PS. 1997. The physical properties of charged
five-dimensional black holes. Classical and Quantum Gravity,
14 (7): 1651-1663. doi: 10.1088/0264-9381/14/7/006
- Loos, HG. 1963. Spin connection in general relativity. Annals of
Physics, 25: 91-108. doi: 10.1016/0003-4916(63)90335-X
- Loos, HG., Treat, RP. 1967. Conditional dynamic equivalence
of free Yang–Mills fields and free gravitational fields. Physics
Letters A, 26 (2): 91-92. doi: 10.1016/0375-9601(67)90117-X
- Mandel, H. 1926. Zur herleitung der feldgleichungen in der
allgemeinen relativitätstheorie. Zeitschrift für Physik, 39 (12):
136-145. doi: 10.1007/BF01321980
- Misner, CW., Thorne, KS., Wheeler, JA. 1973. Gravitation.
Freeman WH and company, San Francisco.
- Ni, W-T. 1975. Yang’s gravitational field equations. Physical Review
Letters, 35 (5): 319-320. [erratum: 1975. Physical Review
Letters, 35 (25): 1748. doi: 10.1103/PhysRevLett.35.1748].
doi: 10.1103/PhysRevLett.35.319
- Öktem, F. 1985. Doğa Bilim Dergisi A1(9): 3.
- Palatini, A. 1919. Deduzione invariantiva delle equazioni
gravitazionali dal principio di Hamilton. Rendiconti del
Circolo Matematico di Palermo, 43: 203-212. doi: 10.1007/
BF03014670
- Pauli, W. 1919. Zur theorie der gravitation und der elektrizitaät
von H Weyl. Physikalische Zeitschrift, 20: 457-467.
- Pavelle, R. 1974. Yang’s gravitational field equations. Physical
Review Letters, 33 (24): 1461-1463. doi: 10.1103/
PhysRevLett.33.1461
- Pavelle, R. 1975. Unphysical solutions of Yang’s gravitational field
equations. Physical Review Letters, 34: 1114. doi: 10.1103/
PhysRevLett.34.1114
- Pavelle, R. 1976. Unphysical characteristics of Yang’s pure-space
equations. Physical Review Letters, 37 (15): 961-964. doi:
10.1103/PhysRevLett.37.961
- Pavelle, R. 1978. Mansouri–Chang gravitation theory.
Physical Review Letters, 40 (5): 267-270. doi: 10.1103/
PhysRevLett.40.267
- Perry, M. 2009. Applications of Differential Geometry to Physics.
p. 36. https://sgielen.files.wordpress.com/2018/01/diffgeo.pdf
Pope, CN. Kaluza–Klein Theory. p. 4. http://people.physics.tamu.
edu/pope/ihplec.pdf
- Stephenson, G. 1958. Quadratic Lagrangians and general
relativity. ll Nuovo Cimento, 9 (2): 263-269. doi: 10.1007/
BF02724929
- Thompson, AH. 1975. Yang’s gravitational field equations.
Physical Review Letters, 34 (8): 507-508. doi: 10.1103/
PhysRevLett.34.507
- Thompson, AH. 1975a. Geometrically degenerate solutions of
the Kilmister–Yang equations. Physical Review Letters, 35 (5):
320-322. doi: 10.1103/PhysRevLett.35.320
- Weyl, H. 1918. Gravitation und elektrizität. Sitzungsberichte
der Königlich Preußischen Akademie der Wissenschaften
(Berlin), 1918: 465-478. doi: 10.1007/978-3-663-19510_811
- Weyl, H. 1919. A new extension of relativity theory. Annalen der
Physik, 59: 101-133. doi: 10.1002/andp.19193641002
- Weyl, H. 1921. Über die physikalischen grundlagen der
erweiterten relativitätstheorie. Physikalische Zeitschrift, 22:
473-480.
- Yang, CN., Mills, RL. 1954. Conservation of isotopic spin and
isotopic gauge invariance. Physical Review, 96 (1): 191-195.
doi: 10.1103/PhysRev.96.191
- Yang, CN. 1974. Integral formalism for gauge fields.
Physical Review Letters, 33 (7): 445-447. doi: 10.1103/
PhysRevLett.33.445