Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Paradigm on the Qualitative Behavior of Chua’s Circuit

Yıl 2022, Cilt: 12 Sayı: 2, 177 - 182, 24.12.2022

Öz

Today, the qualitative behavior of dynamical systems is a very important subject of control theory. Based on this, we consider the stability and instability properties of the equilibrium points of Chua’s circuit under suitable conditions by the Lyapunov direct method. This method gives us qualitative information directly without solving the given systems. From this circuit, we construct suitable energy or candidate Lyapunov function and then apply the method as a tool to investigate the global asymptotic stability and instability of the system. We also determine under which conditions the system behaves as a chaotic system or a memristor. In this study, we realized that an unforced dissipative dynamical system with bounded initial states has zero solution or motion at infinity. Some simulation results and examples are given to verify the obtained theoretical predictions

Kaynakça

  • Adamatzky, A., Chen, G. 2013. Chaos, CNN, Memristors and Beyond a Festschrift for Leon Chua. World Scientific Publishing, pp. 3-24.
  • Ates, M. 2011. Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. Int J Circuit Theory Appl., 40:1165-1174.
  • Chua, LO. 1992. The genesis of Chua’s circuit. Arch Electron Übertrag tech., 46: 250-257.
  • Chua, LO., Komuro, M., Matsumoto, T. 1986. The double scroll family. IEEE Trans Circuits Syst-I., 33: 1073-1118. https://doi. org/10.1109/tcs.1986.1085869
  • Gil, MI. 2005. Stability of linear systems governed by secondorder vector differential equations. Int J Control, 78: 534–536. https://doi.org/10.1080/00207170500111630
  • Haykin, S. 2010. Neural Networks and Learning Machines, NJ, Englewood Cliffs:Prentice-Hall, pp.678-683. https://doi. org/10.22541/au.160630205.52498627/v1
  • Jeltsema, D., Ortega, R., Scherpen, JMA. 2003. A novel passivity property of nonlinear RLC circuits. Proceedings of the 4th Mathmod Symposium; ARGESIM Report 24, University of Groningen, Research Institute of Technology and Management, pp. 845-853.
  • Johnsen, GK. 2012. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J Electr Bioimp., 3: 20-28. https://doi.org/10.5617/jeb.305
  • Kennedy, MP. 1994. Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(11), 771-774. https://doi. org/10.1109/81.331536
  • Kocamaz, UE., Uyaroğlu, Y. 2014. Synchronization of Vilnius chaotic oscillators with active and passive control. J Circuit Syst Comp., 23: 1-17. https://doi.org/10.1142/s0218126614501035
  • La Salle, S., Lefschetz, S. 1961. Stability by Liapunov’s Direct Method with Applications. New York, NY, USA: Academic Press, pp. 28-29
  • Saeidi, B., Solutions, S., Irvine, CA. 2007. A Fourth Order Elliptic Low-Pass Filter with Wide Range of Programmable Bandwidth, Using Four Identical Integrators. IEEE Custom Integrated Circuits Conference (CICC). https://doi.org/10.1109/ cicc.2007.4405712
  • Sene, N. 2019. Stability analysis of the generalized fractional differential equations with and without exogenous inputs. Journal of Nonlinear Sciences and Applications, 12(09), 562–572. http://doi.org/10.22436/jnsa.012.09.01
  • Sene, N. 2020. Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits. IEEE Open Journal of Circuits and Systems, 1, 233–242. http://doi.org/10.1109/ ojcas.2020.3032546
  • Sene, N. 2021. Mathematical views of the fractional Chua’s electrical circuit described by the Caputo-Liouville derivative. Revista Mexicana de Física, 67(1), 91-99. http://doi. org/10.31349/revmexfis.67.91
  • Srisuchinwong, B., San-Um, W. 2007. Implementation of Chua’s chaotic oscillator using” roughly-cubic-like” nonlinearity. In 4th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 36-37). https://doi.org/10.1109/apcc.2007.4433503
  • Sugie, J., Amano, Y. 2004. Global asymptotic stability of nonautonomous systems of Lienard type. J Math Anal Appl., 289: 673-690. https://doi.org/10.1016/j.jmaa.2003.09.023
  • Tchitnga, R., Fotsin, HB., Nana, B., Fotso, PHL., Woafo, P., Hartley’s. Oscillator. 2012. The simplest chaotic twocomponent circuit. Chaos Soliton Fract., 45: 306-313. https://doi.org/10.1016/j.chaos.2011.12.017
  • Tunç, C., Tunç, E. (2007). On the asymptotic behavior of solutions of certain second-order differential equations. Journal of the Franklin Institute, 344(5), 391–398. https://doi.org/10.1016/j. jfranklin.2006.02.011
  • Zhang, L., Yu, L. 2013. Global asymptotic stability of certain third-order nonlinear differential equations. Math Meth Appl Sci., 36: 1845-1850. https://doi.org/10.1002/mma.2729
  • Zhong, GQ. 1994. Implementation of Chua’s circuit with a cubic nonlinearity. IEEE T Circuits Syst-I., 41: 934-941. https://doi. org/10.1109/81.340866
  • Zhong, PJ. Yuandan, L., Yuan, W. 2009. Stabilization of time-varying nonlinear systems: A control Lyapunov function approach. J Syst Sci Complexity, 22: 683-696. https://doi.org/10.1007/s11424-009-9195-1

Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma

Yıl 2022, Cilt: 12 Sayı: 2, 177 - 182, 24.12.2022

Öz

Günümüzde dinamik sistemlerin niteliksel davranışı, kontrol teorisinin çok önemli bir konusudur. Buna dayanarak, Lyapunov direkt yöntemi ile Chua devresinin (üçüncü derece sistem) kararlılık ve kararsızlık özelliklerini uygun koşullar altında ele alıyoruz. Bu yöntem, verilen sistemleri çözmeden bize doğrudan niteliksel bilgi verir. Bu devreden uygun bir enerji (Lyapunov) fonksiyonu oluşturuyoruz ve daha sonra sistemin global asimptotik kararlılığını ve kararsızlığını araştırmak için bir araç olarak yöntemi uyguluyoruz. Ayrıca sistemin hangi koşullar altında bir memristor gibi davrandığını da belirleriz. Bu çalışmada, zorlamasız enerji tüketen dinamik bir sistemin (sınırlı başlangıç durumları) sonsuzda sıfır çözüme (hareket) sahip olduğunu fark ettik. Elde edilen teorik tahminleri doğrulamak için bazı simülasyon sonuçları ve örnekler verilmiştir.

Kaynakça

  • Adamatzky, A., Chen, G. 2013. Chaos, CNN, Memristors and Beyond a Festschrift for Leon Chua. World Scientific Publishing, pp. 3-24.
  • Ates, M. 2011. Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. Int J Circuit Theory Appl., 40:1165-1174.
  • Chua, LO. 1992. The genesis of Chua’s circuit. Arch Electron Übertrag tech., 46: 250-257.
  • Chua, LO., Komuro, M., Matsumoto, T. 1986. The double scroll family. IEEE Trans Circuits Syst-I., 33: 1073-1118. https://doi. org/10.1109/tcs.1986.1085869
  • Gil, MI. 2005. Stability of linear systems governed by secondorder vector differential equations. Int J Control, 78: 534–536. https://doi.org/10.1080/00207170500111630
  • Haykin, S. 2010. Neural Networks and Learning Machines, NJ, Englewood Cliffs:Prentice-Hall, pp.678-683. https://doi. org/10.22541/au.160630205.52498627/v1
  • Jeltsema, D., Ortega, R., Scherpen, JMA. 2003. A novel passivity property of nonlinear RLC circuits. Proceedings of the 4th Mathmod Symposium; ARGESIM Report 24, University of Groningen, Research Institute of Technology and Management, pp. 845-853.
  • Johnsen, GK. 2012. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J Electr Bioimp., 3: 20-28. https://doi.org/10.5617/jeb.305
  • Kennedy, MP. 1994. Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(11), 771-774. https://doi. org/10.1109/81.331536
  • Kocamaz, UE., Uyaroğlu, Y. 2014. Synchronization of Vilnius chaotic oscillators with active and passive control. J Circuit Syst Comp., 23: 1-17. https://doi.org/10.1142/s0218126614501035
  • La Salle, S., Lefschetz, S. 1961. Stability by Liapunov’s Direct Method with Applications. New York, NY, USA: Academic Press, pp. 28-29
  • Saeidi, B., Solutions, S., Irvine, CA. 2007. A Fourth Order Elliptic Low-Pass Filter with Wide Range of Programmable Bandwidth, Using Four Identical Integrators. IEEE Custom Integrated Circuits Conference (CICC). https://doi.org/10.1109/ cicc.2007.4405712
  • Sene, N. 2019. Stability analysis of the generalized fractional differential equations with and without exogenous inputs. Journal of Nonlinear Sciences and Applications, 12(09), 562–572. http://doi.org/10.22436/jnsa.012.09.01
  • Sene, N. 2020. Generalized Mittag-Leffler Input Stability of the Fractional-Order Electrical Circuits. IEEE Open Journal of Circuits and Systems, 1, 233–242. http://doi.org/10.1109/ ojcas.2020.3032546
  • Sene, N. 2021. Mathematical views of the fractional Chua’s electrical circuit described by the Caputo-Liouville derivative. Revista Mexicana de Física, 67(1), 91-99. http://doi. org/10.31349/revmexfis.67.91
  • Srisuchinwong, B., San-Um, W. 2007. Implementation of Chua’s chaotic oscillator using” roughly-cubic-like” nonlinearity. In 4th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 36-37). https://doi.org/10.1109/apcc.2007.4433503
  • Sugie, J., Amano, Y. 2004. Global asymptotic stability of nonautonomous systems of Lienard type. J Math Anal Appl., 289: 673-690. https://doi.org/10.1016/j.jmaa.2003.09.023
  • Tchitnga, R., Fotsin, HB., Nana, B., Fotso, PHL., Woafo, P., Hartley’s. Oscillator. 2012. The simplest chaotic twocomponent circuit. Chaos Soliton Fract., 45: 306-313. https://doi.org/10.1016/j.chaos.2011.12.017
  • Tunç, C., Tunç, E. (2007). On the asymptotic behavior of solutions of certain second-order differential equations. Journal of the Franklin Institute, 344(5), 391–398. https://doi.org/10.1016/j. jfranklin.2006.02.011
  • Zhang, L., Yu, L. 2013. Global asymptotic stability of certain third-order nonlinear differential equations. Math Meth Appl Sci., 36: 1845-1850. https://doi.org/10.1002/mma.2729
  • Zhong, GQ. 1994. Implementation of Chua’s circuit with a cubic nonlinearity. IEEE T Circuits Syst-I., 41: 934-941. https://doi. org/10.1109/81.340866
  • Zhong, PJ. Yuandan, L., Yuan, W. 2009. Stabilization of time-varying nonlinear systems: A control Lyapunov function approach. J Syst Sci Complexity, 22: 683-696. https://doi.org/10.1007/s11424-009-9195-1
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Muzaffer Ateş 0000-0001-5725-9580

Muhammet Ateş 0000-0003-2223-2745

Yayımlanma Tarihi 24 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Ateş, M., & Ateş, M. (2022). Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma. Karaelmas Fen Ve Mühendislik Dergisi, 12(2), 177-182. https://doi.org/10.7212/karaelmasfen.1053517
AMA Ateş M, Ateş M. Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2022;12(2):177-182. doi:10.7212/karaelmasfen.1053517
Chicago Ateş, Muzaffer, ve Muhammet Ateş. “Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 2 (Aralık 2022): 177-82. https://doi.org/10.7212/karaelmasfen.1053517.
EndNote Ateş M, Ateş M (01 Aralık 2022) Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma. Karaelmas Fen ve Mühendislik Dergisi 12 2 177–182.
IEEE M. Ateş ve M. Ateş, “Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 2, ss. 177–182, 2022, doi: 10.7212/karaelmasfen.1053517.
ISNAD Ateş, Muzaffer - Ateş, Muhammet. “Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma”. Karaelmas Fen ve Mühendislik Dergisi 12/2 (Aralık 2022), 177-182. https://doi.org/10.7212/karaelmasfen.1053517.
JAMA Ateş M, Ateş M. Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:177–182.
MLA Ateş, Muzaffer ve Muhammet Ateş. “Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 2, 2022, ss. 177-82, doi:10.7212/karaelmasfen.1053517.
Vancouver Ateş M, Ateş M. Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(2):177-82.