A New Paradigm on the Qualitative Behavior of Chua’s Circuit
Yıl 2022,
Cilt: 12 Sayı: 2, 177 - 182, 24.12.2022
Muzaffer Ateş
,
Muhammet Ateş
Öz
Today, the qualitative behavior of dynamical systems is a very important subject of control theory. Based on this, we consider the stability and instability properties of the equilibrium points of Chua’s circuit under suitable conditions by the Lyapunov direct method. This method gives us qualitative information directly without solving the given systems. From this circuit, we construct suitable energy or candidate Lyapunov function and then apply the method as a tool to investigate the global asymptotic stability and instability of the system. We also determine under which conditions the system behaves as a chaotic system or a memristor. In this study, we realized that an unforced dissipative dynamical system with bounded initial states has zero solution or motion at infinity. Some simulation results and examples are given to verify the obtained theoretical predictions
Kaynakça
- Adamatzky, A., Chen, G. 2013. Chaos, CNN, Memristors and
Beyond a Festschrift for Leon Chua. World Scientific Publishing,
pp. 3-24.
- Ates, M. 2011. Circuit theory approach to stability and passivity
analysis of nonlinear dynamical systems. Int J Circuit Theory
Appl., 40:1165-1174.
- Chua, LO. 1992. The genesis of Chua’s circuit. Arch Electron
Übertrag tech., 46: 250-257.
- Chua, LO., Komuro, M., Matsumoto, T. 1986. The double scroll
family. IEEE Trans Circuits Syst-I., 33: 1073-1118. https://doi.
org/10.1109/tcs.1986.1085869
- Gil, MI. 2005. Stability of linear systems governed by secondorder
vector differential equations. Int J Control, 78: 534–536.
https://doi.org/10.1080/00207170500111630
- Haykin, S. 2010. Neural Networks and Learning Machines, NJ,
Englewood Cliffs:Prentice-Hall, pp.678-683. https://doi.
org/10.22541/au.160630205.52498627/v1
- Jeltsema, D., Ortega, R., Scherpen, JMA. 2003. A novel
passivity property of nonlinear RLC circuits. Proceedings
of the 4th Mathmod Symposium; ARGESIM Report 24,
University of Groningen, Research Institute of Technology
and Management, pp. 845-853.
- Johnsen, GK. 2012. An introduction to the memristor – a
valuable circuit element in bioelectricity and bioimpedance. J
Electr Bioimp., 3: 20-28. https://doi.org/10.5617/jeb.305
- Kennedy, MP. 1994. Chaos in the Colpitts oscillator. IEEE
Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 41(11), 771-774. https://doi.
org/10.1109/81.331536
- Kocamaz, UE., Uyaroğlu, Y. 2014. Synchronization of Vilnius
chaotic oscillators with active and passive control. J Circuit Syst
Comp., 23: 1-17. https://doi.org/10.1142/s0218126614501035
- La Salle, S., Lefschetz, S. 1961. Stability by Liapunov’s Direct
Method with Applications. New York, NY, USA: Academic
Press, pp. 28-29
- Saeidi, B., Solutions, S., Irvine, CA. 2007. A Fourth Order
Elliptic Low-Pass Filter with Wide Range of Programmable
Bandwidth, Using Four Identical Integrators. IEEE Custom
Integrated Circuits Conference (CICC). https://doi.org/10.1109/
cicc.2007.4405712
- Sene, N. 2019. Stability analysis of the generalized fractional
differential equations with and without exogenous inputs.
Journal of Nonlinear Sciences and Applications, 12(09), 562–572.
http://doi.org/10.22436/jnsa.012.09.01
- Sene, N. 2020. Generalized Mittag-Leffler Input Stability of
the Fractional-Order Electrical Circuits. IEEE Open Journal
of Circuits and Systems, 1, 233–242. http://doi.org/10.1109/
ojcas.2020.3032546
- Sene, N. 2021. Mathematical views of the fractional Chua’s
electrical circuit described by the Caputo-Liouville
derivative. Revista Mexicana de Física, 67(1), 91-99. http://doi.
org/10.31349/revmexfis.67.91
- Srisuchinwong, B., San-Um, W. 2007. Implementation of Chua’s
chaotic oscillator using” roughly-cubic-like” nonlinearity. In 4th
International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (pp.
36-37). https://doi.org/10.1109/apcc.2007.4433503
- Sugie, J., Amano, Y. 2004. Global asymptotic stability of nonautonomous
systems of Lienard type. J Math Anal Appl., 289:
673-690. https://doi.org/10.1016/j.jmaa.2003.09.023
- Tchitnga, R., Fotsin, HB., Nana, B., Fotso, PHL., Woafo,
P., Hartley’s. Oscillator. 2012. The simplest chaotic twocomponent
circuit. Chaos Soliton Fract., 45: 306-313.
https://doi.org/10.1016/j.chaos.2011.12.017
- Tunç, C., Tunç, E. (2007). On the asymptotic behavior of solutions
of certain second-order differential equations. Journal of the
Franklin Institute, 344(5), 391–398. https://doi.org/10.1016/j.
jfranklin.2006.02.011
- Zhang, L., Yu, L. 2013. Global asymptotic stability of certain
third-order nonlinear differential equations. Math Meth Appl
Sci., 36: 1845-1850. https://doi.org/10.1002/mma.2729
- Zhong, GQ. 1994. Implementation of Chua’s circuit with a cubic
nonlinearity. IEEE T Circuits Syst-I., 41: 934-941. https://doi.
org/10.1109/81.340866
- Zhong, PJ. Yuandan, L., Yuan, W. 2009. Stabilization of
time-varying nonlinear systems: A control Lyapunov
function approach. J Syst Sci Complexity, 22: 683-696.
https://doi.org/10.1007/s11424-009-9195-1
Chua Devresinin Kalitatif Davranışı Üzerine Yeni Bir Paradigma
Yıl 2022,
Cilt: 12 Sayı: 2, 177 - 182, 24.12.2022
Muzaffer Ateş
,
Muhammet Ateş
Öz
Günümüzde dinamik sistemlerin niteliksel davranışı, kontrol teorisinin çok önemli bir konusudur. Buna dayanarak, Lyapunov direkt yöntemi ile Chua devresinin (üçüncü derece sistem) kararlılık ve kararsızlık özelliklerini uygun koşullar altında ele alıyoruz. Bu yöntem, verilen sistemleri çözmeden bize doğrudan niteliksel bilgi verir. Bu devreden uygun bir enerji (Lyapunov) fonksiyonu oluşturuyoruz ve daha sonra sistemin global asimptotik kararlılığını ve kararsızlığını araştırmak için bir araç olarak yöntemi uyguluyoruz. Ayrıca sistemin hangi koşullar altında bir memristor gibi davrandığını da belirleriz. Bu çalışmada, zorlamasız enerji tüketen dinamik bir sistemin (sınırlı başlangıç durumları) sonsuzda sıfır çözüme (hareket) sahip olduğunu fark ettik. Elde edilen teorik tahminleri doğrulamak için bazı simülasyon sonuçları ve örnekler verilmiştir.
Kaynakça
- Adamatzky, A., Chen, G. 2013. Chaos, CNN, Memristors and
Beyond a Festschrift for Leon Chua. World Scientific Publishing,
pp. 3-24.
- Ates, M. 2011. Circuit theory approach to stability and passivity
analysis of nonlinear dynamical systems. Int J Circuit Theory
Appl., 40:1165-1174.
- Chua, LO. 1992. The genesis of Chua’s circuit. Arch Electron
Übertrag tech., 46: 250-257.
- Chua, LO., Komuro, M., Matsumoto, T. 1986. The double scroll
family. IEEE Trans Circuits Syst-I., 33: 1073-1118. https://doi.
org/10.1109/tcs.1986.1085869
- Gil, MI. 2005. Stability of linear systems governed by secondorder
vector differential equations. Int J Control, 78: 534–536.
https://doi.org/10.1080/00207170500111630
- Haykin, S. 2010. Neural Networks and Learning Machines, NJ,
Englewood Cliffs:Prentice-Hall, pp.678-683. https://doi.
org/10.22541/au.160630205.52498627/v1
- Jeltsema, D., Ortega, R., Scherpen, JMA. 2003. A novel
passivity property of nonlinear RLC circuits. Proceedings
of the 4th Mathmod Symposium; ARGESIM Report 24,
University of Groningen, Research Institute of Technology
and Management, pp. 845-853.
- Johnsen, GK. 2012. An introduction to the memristor – a
valuable circuit element in bioelectricity and bioimpedance. J
Electr Bioimp., 3: 20-28. https://doi.org/10.5617/jeb.305
- Kennedy, MP. 1994. Chaos in the Colpitts oscillator. IEEE
Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 41(11), 771-774. https://doi.
org/10.1109/81.331536
- Kocamaz, UE., Uyaroğlu, Y. 2014. Synchronization of Vilnius
chaotic oscillators with active and passive control. J Circuit Syst
Comp., 23: 1-17. https://doi.org/10.1142/s0218126614501035
- La Salle, S., Lefschetz, S. 1961. Stability by Liapunov’s Direct
Method with Applications. New York, NY, USA: Academic
Press, pp. 28-29
- Saeidi, B., Solutions, S., Irvine, CA. 2007. A Fourth Order
Elliptic Low-Pass Filter with Wide Range of Programmable
Bandwidth, Using Four Identical Integrators. IEEE Custom
Integrated Circuits Conference (CICC). https://doi.org/10.1109/
cicc.2007.4405712
- Sene, N. 2019. Stability analysis of the generalized fractional
differential equations with and without exogenous inputs.
Journal of Nonlinear Sciences and Applications, 12(09), 562–572.
http://doi.org/10.22436/jnsa.012.09.01
- Sene, N. 2020. Generalized Mittag-Leffler Input Stability of
the Fractional-Order Electrical Circuits. IEEE Open Journal
of Circuits and Systems, 1, 233–242. http://doi.org/10.1109/
ojcas.2020.3032546
- Sene, N. 2021. Mathematical views of the fractional Chua’s
electrical circuit described by the Caputo-Liouville
derivative. Revista Mexicana de Física, 67(1), 91-99. http://doi.
org/10.31349/revmexfis.67.91
- Srisuchinwong, B., San-Um, W. 2007. Implementation of Chua’s
chaotic oscillator using” roughly-cubic-like” nonlinearity. In 4th
International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (pp.
36-37). https://doi.org/10.1109/apcc.2007.4433503
- Sugie, J., Amano, Y. 2004. Global asymptotic stability of nonautonomous
systems of Lienard type. J Math Anal Appl., 289:
673-690. https://doi.org/10.1016/j.jmaa.2003.09.023
- Tchitnga, R., Fotsin, HB., Nana, B., Fotso, PHL., Woafo,
P., Hartley’s. Oscillator. 2012. The simplest chaotic twocomponent
circuit. Chaos Soliton Fract., 45: 306-313.
https://doi.org/10.1016/j.chaos.2011.12.017
- Tunç, C., Tunç, E. (2007). On the asymptotic behavior of solutions
of certain second-order differential equations. Journal of the
Franklin Institute, 344(5), 391–398. https://doi.org/10.1016/j.
jfranklin.2006.02.011
- Zhang, L., Yu, L. 2013. Global asymptotic stability of certain
third-order nonlinear differential equations. Math Meth Appl
Sci., 36: 1845-1850. https://doi.org/10.1002/mma.2729
- Zhong, GQ. 1994. Implementation of Chua’s circuit with a cubic
nonlinearity. IEEE T Circuits Syst-I., 41: 934-941. https://doi.
org/10.1109/81.340866
- Zhong, PJ. Yuandan, L., Yuan, W. 2009. Stabilization of
time-varying nonlinear systems: A control Lyapunov
function approach. J Syst Sci Complexity, 22: 683-696.
https://doi.org/10.1007/s11424-009-9195-1