Araştırma Makalesi
BibTex RIS Kaynak Göster

Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi

Yıl 2022, Cilt: 12 Sayı: 2, 251 - 262, 24.12.2022

Öz

Tarım ürünlerinin verimini etkileyen zararlı organizmaları engellemek, kontrol altına almak veya zararlarını azaltmak için çeşitli pestisitler kullanılmaktadır. Bu kimyasal maddelerin kontrolsüz ve aşırı kullanımları hem çevre hem de bütün canlılar için tehlike oluşturmaktadır. Zararlı böcekler ile mücadelede kullanılan kimyasal maddelerin etkili olabilmesi için laboratuvar koşullarında model organizmalar üzerinde bu maddelerin canlı üzerindeki fizyolojik etkilerinin iyi bilinmesi gerekir. Bu çalışmada model organizma olarak Drosophila melanogaster kullanılmış olup, insektisitlere alternatif bir madde olarak antibakteriyel bir etkiye sahip penisilin G’nin böcek üzerinde oksidatif etkisi ve antioksidan kapasitesindeki değişimler incelenmiştir. Kontrol ile karşılaştırıldığında en düşük denenen konsantrasyon olan 100 mg/L penisilin G içeren besin, böceğin 3. evre larvasında, MDA miktarını 8,39 ± 2,65 nmol/mg proteinden 18,92 ± 3,22 nmol/mg proteine istatistiksel olarak önemli derecede artırdığı tespit edildi. 400 mg/L’lik besinde 3. evre larvalarında protein karbonil miktarı 1539,69 ± 286,45 nmol/mg protein’e yükseldiği tespit edilmiş ve istatistiksel olarak önemli çıkmıştır. Kontrol grubu ile karşılaştırıldığında larval evredeki GST aktivitesinin 100 mg/L’de istatistiksel olarak önemli bir artış tespit edildi. Böceğin pup ve ergin evresinde 400 mg/L bulunduran besin grubunda, CAT aktivitesi sırasıyla 547,58 ± 55,56 µmol/mg protein/dk, 242,24 ± 42,85 µmol/mg protein/dk olarak tespit edilmiş olup, bu sonuç kontrol ile karşılaştırıldığında önemli derecede yüksek bulundu. Pup evresindeki SOD aktivitesi en düşük penisilin miktarında (100 mg/L) istatistiksel olarak anlamlı bir artış gözlemlendi. 400 mg/L’de kontrol grubuyla karşılaştırıldığında pup evresinde GPx aktivitesi yaklaşık iki katı oranında arttığı tespit edildi. Elde edilen sonuçlar ile Penisilin G’nin böceğin farklı evrelerindeki antioksidan enzimler üzerinde ve oksidatif stres belirteçlerinde önemli değişimlere sebep olduğu tespit edildi.

Teşekkür

Bu çalışma “Farklı etki mekanizmasına sahip antimikrobiyal maddelerin Drosophila melanogaster’in antioksidan savunma sistemi üzerine etkisi” başlıklı doktora tez projesinden elde edilmiştir. Biyoloji Bölümü Hayvan Fizyolojisi ve Biyokimyası Araştırma Laboratuvarı’nın imkanlarını kullanmamızı sağlayan Prof. Dr. Kemal Büyükgüzel’e teşekkür ederiz.

Kaynakça

  • Abolaji, AO., Kamdem, JP., Farombi, EO., Rocha, JBT. 2013. Drosophila melanogaster as a promising model organism in toxicological studies. Arch. Bas. App. Med., 1 (1): 33-38.
  • Aebi, H. 1984. Catalase in vitro. Methods in Enzymol., 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3.
  • Anet, A., Olakkaran S., Purayil AK., Puttaswamygowda, GH. 2019. Bisphenol a induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J. Hazard. Mater., 370: 42-53. https://doi.org/10.1016/j.jhazmat.2018.07.050.
  • Aslan, N., Büyükgüzel E., Büyükgüzel K. 2019. Oxidative effects of gemifloxacin on some biological traits of Drosophila melanogaster (Diptera: Drosophilidae). Environ. Entomol., 48 (3): 667-673. https://doi.org/10.1093/ee/nvz039.
  • Bauer, H., Kanzok, S. M., Schirmer, HR. 2002. Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster. Isolation and characterization of a second thioredoxin in D. melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2. J. Biol. Chem., 277 (20): 17457-17463. https://doi.org/10.1074/jbc.M200636200.
  • Büyükgüzel, E. 2009. Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to malathion. J. Econ. Entomol., 102 (1): 152-159. https://doi.org/10.1603/029.102.0122.
  • Büyükgüzel, E., Kalender, Y. 2007. Penicillin-Induced oxidative stress: effects on antioxidative response of midgut tissues in instars of Galleria mellonella. J. Econ. Entomol., 100 (5): 1533-1541. https://doi.org/10.1093/jee/100.5.1533.
  • Büyükgüzel, E., Kalender, Y. 2008. Galleria mellonella (L.) survivorship, development and protein content in response to dietary antibiotics. Entomol. Sci., 43 (1): 27-40. https://doi.org/10.18474/0749-8004-43.1.27.
  • Büyükgüzel, E., Kalender, Y. 2009. Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic Biochem Phys., 94 (2): 112-118. https://doi.org/10.1016/j.pestbp.2009.04.008.
  • Büyükgüzel, K., Yazgan, Ş. 2002. Effects of antimicrobial agents on the survival and development of larvae of Pimpla turionellae L. (Hymenoptera: Ichneumonidae) reared on an artificial diet. Turk J Zool., 26 (1): 111-119.
  • Catae, AF., da Silva Menegasso, AR., Pratavieira, M., Palma, MS., Malaspina, O., Roat, TC. 2019. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci., 75 (3): 607-615. https://doi.org/10.1002/ps.5226.
  • Cohen, AC. 2015. Insect diets: science and technology. Boca Raton, FL, USA: CRC Press. https://doi.org/10.1201/b18562.
  • Corona, M., Robinson, GE. 2006. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol., 15 (5): 687-701. https://doi.org/10.1111/j.1365-2583.2006.00695.x.
  • Çelik, C., Büyükgüzel, K., Büyükgüzel, E. 2019. The effects of oxyclozanide on survival, development and total protein of Galleria mellonella L. (Lepidoptera: Pyralidae). J. Entomol. Res. Soc., 21 (1): 95-108.
  • Dey, D. 2016. Impact of indiscriminate use of insecticide on environmental pollution. Int. J. Plant Prot., 9 (1): 264-267. https://doi.org/10.15740/has/ijpp/9.1/264-267.
  • Doğan, FN., Karpuzcu, ME. 2019. Türkiye’de tarım kaynaklı pestisit kirliliğinin durumu ve alternatif kontrol tedbirlerinin incelenmesi. Pamukkale Üniv. Müh. Bilim Derg., 25 (6): 734-747. https:// doi: 10.5505/pajes.2018.53189.
  • Foyer, CH., Descourvieres, P., Kunert, KJ. 1994. Protection against oxygen radicals - an important defense-mechanism studied in transgenic plants. Plant Cell Environ., 17 (5): 507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x.
  • Güneş, E., Büyükgüzel, E. 2017. Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turk Entomol Derg., 41 (1): 3-15. https://doi.org/10.16970/ted.59163.
  • Van der Fels-Klerx, HJ., Camenzuli, L., Belluco, S., Meijer, N., Ricci, A. 2018. Food safety issues related to uses of insects for feeds and foods. Compr Rev Food Sci Food Saf., 17(5):1172-1183. https://doi.org/10.1111/1541-4337.12385.
  • Habig, HW., Pabst MJ., Jakoby WB. 1974. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem., 249 (22): 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8.
  • Halliwell, B., Gutteridge, JMC. 2015. Free radicals in biology and medicine. In Free Radicals in Biology and Medicine. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001.
  • Hirsch, HVB., Lnenicka, G., Possidente, D., Possidente, B., Garfinkel, MD., Wang, L., Lu, X., Ruden, DM. 2012. Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Front. Genet., 3 (68): 1-7. https://doi: 10.3389/fgene.2012.00068.
  • He, Y., Guo, C., Lv, J., Deng, Y., Xu, J. 2021. Occurrence, sources, and ecological risks of three classes of insecticides in sediments of the liaohe river basin, china. Environ. Sci. Pollut. Res., 28 (44): 62726-62735. https://doi.org/10.1007/s11356-021-15060-5.
  • Huynh, MP., Meihls, LN., Hibbard, BE., Lapointe, SL., Niedz, RP., Ludwick, DC., Coudron, TA. 2017. Diet improvement for western corn rootworm (Coleoptera: Chrysomelidae) larvae. PLoS One, 12 (11): e0187997. https://doi.org/10.1371/journal.pone.0187997.
  • Hyršl, P., Büyükgüzel, E., Büyükgüzel, K. 2007. The effects of boric acid-induced oxidative stres on antioxidant enzymes and survivorship in Galleria mellonella. Arch Insect Biochem Physiol., 66 (1): 23-31. https://doi.org/10.1002/arch.20194.
  • IBM SPSS Statistics 2021. User’s manual, version 28. SPSS, Chicago, IL.
  • Jain, SK., Levine, S., Levine, N. 1994. Elevated lipid peroxidation and vitamin e-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Rad Biol Med., 18 (2): 337-341. https://doi.org/10.1016/0891-5849(94)00114-y.
  • Karthi, S., Vaideki, K., Shivakumar, MS., Ponsankar, A., Thanigaivel, A., Chellappandian, M., Vasantha-Srinivasan, P., Muthu-Pandian, CK., Hunter, WB., Senthil-Nathan, S. 2018. Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pestic Biochem Phys., 149: 54-60. https://doi.org/10.1016/j.pestbp.2018.05.009.
  • Kastamonuluoğlu, S., Büyükgüzel, K., Büyükgüzel, E. 2020. The use of dietary antifungal agent terbinafine in artificial diet and its effects on some biological and biochemical parameters of the model organism Galleria mellonella (Lepidoptera: Pyralidae). J. Econ. Entomol., 113 (3): 1110-1117. https://doi.org/10.1093/jee/toaa039.
  • Kaur, M., Chadha P., Kaur S., Kaur, A. 2021. Effect of Aspergillus flavus on lipid peroxidation and activity of antioxidant enzymes in midgut tissue of Spodoptera litura larvae. Arch. Phytopathol. Plant Prot., 54 (3-4): 177-190. https://doi.org/10.1080/03235408.2020.1826719.
  • Keles, V., Buyukguzel, K., Buyukguzel, E. 2021. The effect of streptomycin on survival, development, and some biochemical aspects of Drosophila melanogaster. Turk J Zool., 45 (6): 432-441. https://doi:10.3906/zoo-2101-14.
  • Krishnan, N., Kodrík, D. 2006. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol., 52 (1): 11-20. https://doi.org/10.1016/j.jinsphys.2005.08.009.
  • Krishnan, N., Sehnal, F. 2006. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch Insect Biochem Physiol. 63 (1): 1-10. https://doi.org/10.1002/arch.20135.
  • Liu, J., Li, X., Wang, X. 2019. Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster. Chemosphere, 237: 124542. https://doi.org/10.1016/j.chemosphere.2019.124542.
  • Lushchak, VI. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 224: 164-175. https://doi.org/10.1016/j.cbi.2014.10.016.
  • Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem., 47 (3): 469-474. doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • Matés, JM. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153 (1-3): 83-104. https://doi.org/10.1016/S0300-483X(00)00306-1.
  • Nagpal, I., Abraham, SK. 2017. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster. Toxicol. Mech. Methods, 27 (4): 286-292. https://doi.org/10.1080/15376516.2016.1278294.
  • Nair, RV., Kulye MS., Kamath, SP. 2018. A single semi-synthetic diet with improved antimicrobial activity for mass rearing of lepidopteran insect pests of cotton and maize. Entomol. Exp. Appl., 167 (4): 377-387. https://doi.org/10.1111/eea.12779.
  • Paglia, DE., Valentine, WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. lab. clin. med., 70 (1): 158-169. https://doi.org/10.5555/uri:pii:0022214367900765.
  • Pajot, P. 1976. Fluorescence of proteins in 6-M guanidine hydrochloride. Euro J Biochem., 63 (1): 263-269. https://doi.org/10.1111/j.1432-1033.1976.tb10228.x.
  • Parvathi, DV., Amritha, AS., Paul, SFD. 2009. Wonder animal model for genetic studies-Drosophila melanogaster-its life cycle and breeding methods-a review introduction. Sri Ramachandra j. Med., 2 (2): 33-38.
  • Pascacio-Villafán, C., Birke, A., Williams, T., Aluja, M. 2017. Modeling the cost-effectiveness of insect rearing on artificial diets: a test with a tephritid fly used in the sterile insect technique. PLoS One, 12 (3): e0173205. https://doi.org/10.1371/journal.pone.0173205.
  • Reece, JB., Urry, LA., Cain, ML., Wasserman, SA., Minorsky, PV., Jackson, RB. 2010. Campbell biology. In Campbell Biology. https://doi.org/10.1007/s13398-014-0173-7.2.
  • Üstündağ, G., Büyükgüzel, K., Büyükgüzel, E. 2020. Penicillin impact on survivorship, development, and adult longevity of Drosophila melanogaster (Diptera: Drosophilidae). Entomol. Sci., 55 (4): 560-569. doi: https://doi.org/10.18474/0749-8004-55.4.560.
  • Ustundağ, G., Buyukguzel, K., Buyukguzel, E. 2019. The effect of niclosamide on certain biological and biochemical properties of Drosophila melanogaster. Eur. J. Biol., 78 (1): 29-39. https://doi.org/10.26650/EurJBiol.2019.0003.
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, MTD., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39 (1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001.
  • Wang, Y., Oberley, LW., Murhammer, DW. 2001. Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic. Biol. Med., 30 (11): 1254-1262. https://doi.org/10.1016/S0891-5849(01)00520-2.
  • Yao, P., Chen, X., Yan, Y., Liu, F., Zhang, Y., Guo, X., Xu, B. 2014. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic. Biol. Med., 68: 335-346. https://doi.org/10.1016/j.freeradbiomed.2013.12.020.
  • Zorlu, T., Nurullahoğlu, ZU., Altuntaş, H. 2018. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). J. Entomol. Res. Soc., 20 (3): 89-103.

Effect of Antibacterial Penicillin G on Antioxidant Defense System of Drosophila melanogaster

Yıl 2022, Cilt: 12 Sayı: 2, 251 - 262, 24.12.2022

Öz

Various pesticides are used to prevent, control or reduce harmful organisms that affect the yield of agricultural products. The uncontrolled and excessive use of these chemical substances poses a danger to both the environment and all living things. In order for the chemicals used in the management against harmful insects to be effective, the physiological effects of these substances on model organisms must be well known in laboratory conditions. In this study, Drosophila melanogaster was used as a model organism, and the oxidative effect of penicillin G, which has an antibacterial effect as an alternative to insecticides, on the insect and changes in antioxidant capacity were investigated. 100 mg/L of penicillin G concentration compared to the control, statistically significantly increased the MDA content from 8.39 ± 2.65 nmol/mg protein to 18.92 ± 3.22 nmol/mg protein in the 3rd stage larva of the insect. It was determined that the amount of protein carbonyl in the 3rd stage larvae increased to 1539.69 ± 286.45 nmol/mg protein in 400 mg/L diet and it was statistically significant. Compared with the control group, a statistically significant increase in GST activity in the larval stage was detected at 100 mg/L. 400 mg/L of penicillin G concentration in the pupa and adult stages of the insect, the CAT activity was determined as 547.58 ± 55.56 µmol/mg protein/min, 242.24 ± 42.85 µmol/mg protein/min, respectively. was significantly higher compared to the control. A statistically significant increase was observed in the lowest amount of penicillin G (100 mg/L) in the SOD activity in the pup stage. Compared to the control group at 400 mg/L, GPx activity was found to increase approximately twice in the pup stage. With the results obtained, it was determined that Penicillin G caused significant changes on antioxidant enzymes and oxidative stress markers in different stages of the insect.

Kaynakça

  • Abolaji, AO., Kamdem, JP., Farombi, EO., Rocha, JBT. 2013. Drosophila melanogaster as a promising model organism in toxicological studies. Arch. Bas. App. Med., 1 (1): 33-38.
  • Aebi, H. 1984. Catalase in vitro. Methods in Enzymol., 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3.
  • Anet, A., Olakkaran S., Purayil AK., Puttaswamygowda, GH. 2019. Bisphenol a induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J. Hazard. Mater., 370: 42-53. https://doi.org/10.1016/j.jhazmat.2018.07.050.
  • Aslan, N., Büyükgüzel E., Büyükgüzel K. 2019. Oxidative effects of gemifloxacin on some biological traits of Drosophila melanogaster (Diptera: Drosophilidae). Environ. Entomol., 48 (3): 667-673. https://doi.org/10.1093/ee/nvz039.
  • Bauer, H., Kanzok, S. M., Schirmer, HR. 2002. Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster. Isolation and characterization of a second thioredoxin in D. melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2. J. Biol. Chem., 277 (20): 17457-17463. https://doi.org/10.1074/jbc.M200636200.
  • Büyükgüzel, E. 2009. Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to malathion. J. Econ. Entomol., 102 (1): 152-159. https://doi.org/10.1603/029.102.0122.
  • Büyükgüzel, E., Kalender, Y. 2007. Penicillin-Induced oxidative stress: effects on antioxidative response of midgut tissues in instars of Galleria mellonella. J. Econ. Entomol., 100 (5): 1533-1541. https://doi.org/10.1093/jee/100.5.1533.
  • Büyükgüzel, E., Kalender, Y. 2008. Galleria mellonella (L.) survivorship, development and protein content in response to dietary antibiotics. Entomol. Sci., 43 (1): 27-40. https://doi.org/10.18474/0749-8004-43.1.27.
  • Büyükgüzel, E., Kalender, Y. 2009. Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic Biochem Phys., 94 (2): 112-118. https://doi.org/10.1016/j.pestbp.2009.04.008.
  • Büyükgüzel, K., Yazgan, Ş. 2002. Effects of antimicrobial agents on the survival and development of larvae of Pimpla turionellae L. (Hymenoptera: Ichneumonidae) reared on an artificial diet. Turk J Zool., 26 (1): 111-119.
  • Catae, AF., da Silva Menegasso, AR., Pratavieira, M., Palma, MS., Malaspina, O., Roat, TC. 2019. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci., 75 (3): 607-615. https://doi.org/10.1002/ps.5226.
  • Cohen, AC. 2015. Insect diets: science and technology. Boca Raton, FL, USA: CRC Press. https://doi.org/10.1201/b18562.
  • Corona, M., Robinson, GE. 2006. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol., 15 (5): 687-701. https://doi.org/10.1111/j.1365-2583.2006.00695.x.
  • Çelik, C., Büyükgüzel, K., Büyükgüzel, E. 2019. The effects of oxyclozanide on survival, development and total protein of Galleria mellonella L. (Lepidoptera: Pyralidae). J. Entomol. Res. Soc., 21 (1): 95-108.
  • Dey, D. 2016. Impact of indiscriminate use of insecticide on environmental pollution. Int. J. Plant Prot., 9 (1): 264-267. https://doi.org/10.15740/has/ijpp/9.1/264-267.
  • Doğan, FN., Karpuzcu, ME. 2019. Türkiye’de tarım kaynaklı pestisit kirliliğinin durumu ve alternatif kontrol tedbirlerinin incelenmesi. Pamukkale Üniv. Müh. Bilim Derg., 25 (6): 734-747. https:// doi: 10.5505/pajes.2018.53189.
  • Foyer, CH., Descourvieres, P., Kunert, KJ. 1994. Protection against oxygen radicals - an important defense-mechanism studied in transgenic plants. Plant Cell Environ., 17 (5): 507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x.
  • Güneş, E., Büyükgüzel, E. 2017. Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turk Entomol Derg., 41 (1): 3-15. https://doi.org/10.16970/ted.59163.
  • Van der Fels-Klerx, HJ., Camenzuli, L., Belluco, S., Meijer, N., Ricci, A. 2018. Food safety issues related to uses of insects for feeds and foods. Compr Rev Food Sci Food Saf., 17(5):1172-1183. https://doi.org/10.1111/1541-4337.12385.
  • Habig, HW., Pabst MJ., Jakoby WB. 1974. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem., 249 (22): 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8.
  • Halliwell, B., Gutteridge, JMC. 2015. Free radicals in biology and medicine. In Free Radicals in Biology and Medicine. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001.
  • Hirsch, HVB., Lnenicka, G., Possidente, D., Possidente, B., Garfinkel, MD., Wang, L., Lu, X., Ruden, DM. 2012. Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Front. Genet., 3 (68): 1-7. https://doi: 10.3389/fgene.2012.00068.
  • He, Y., Guo, C., Lv, J., Deng, Y., Xu, J. 2021. Occurrence, sources, and ecological risks of three classes of insecticides in sediments of the liaohe river basin, china. Environ. Sci. Pollut. Res., 28 (44): 62726-62735. https://doi.org/10.1007/s11356-021-15060-5.
  • Huynh, MP., Meihls, LN., Hibbard, BE., Lapointe, SL., Niedz, RP., Ludwick, DC., Coudron, TA. 2017. Diet improvement for western corn rootworm (Coleoptera: Chrysomelidae) larvae. PLoS One, 12 (11): e0187997. https://doi.org/10.1371/journal.pone.0187997.
  • Hyršl, P., Büyükgüzel, E., Büyükgüzel, K. 2007. The effects of boric acid-induced oxidative stres on antioxidant enzymes and survivorship in Galleria mellonella. Arch Insect Biochem Physiol., 66 (1): 23-31. https://doi.org/10.1002/arch.20194.
  • IBM SPSS Statistics 2021. User’s manual, version 28. SPSS, Chicago, IL.
  • Jain, SK., Levine, S., Levine, N. 1994. Elevated lipid peroxidation and vitamin e-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Rad Biol Med., 18 (2): 337-341. https://doi.org/10.1016/0891-5849(94)00114-y.
  • Karthi, S., Vaideki, K., Shivakumar, MS., Ponsankar, A., Thanigaivel, A., Chellappandian, M., Vasantha-Srinivasan, P., Muthu-Pandian, CK., Hunter, WB., Senthil-Nathan, S. 2018. Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pestic Biochem Phys., 149: 54-60. https://doi.org/10.1016/j.pestbp.2018.05.009.
  • Kastamonuluoğlu, S., Büyükgüzel, K., Büyükgüzel, E. 2020. The use of dietary antifungal agent terbinafine in artificial diet and its effects on some biological and biochemical parameters of the model organism Galleria mellonella (Lepidoptera: Pyralidae). J. Econ. Entomol., 113 (3): 1110-1117. https://doi.org/10.1093/jee/toaa039.
  • Kaur, M., Chadha P., Kaur S., Kaur, A. 2021. Effect of Aspergillus flavus on lipid peroxidation and activity of antioxidant enzymes in midgut tissue of Spodoptera litura larvae. Arch. Phytopathol. Plant Prot., 54 (3-4): 177-190. https://doi.org/10.1080/03235408.2020.1826719.
  • Keles, V., Buyukguzel, K., Buyukguzel, E. 2021. The effect of streptomycin on survival, development, and some biochemical aspects of Drosophila melanogaster. Turk J Zool., 45 (6): 432-441. https://doi:10.3906/zoo-2101-14.
  • Krishnan, N., Kodrík, D. 2006. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol., 52 (1): 11-20. https://doi.org/10.1016/j.jinsphys.2005.08.009.
  • Krishnan, N., Sehnal, F. 2006. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch Insect Biochem Physiol. 63 (1): 1-10. https://doi.org/10.1002/arch.20135.
  • Liu, J., Li, X., Wang, X. 2019. Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster. Chemosphere, 237: 124542. https://doi.org/10.1016/j.chemosphere.2019.124542.
  • Lushchak, VI. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 224: 164-175. https://doi.org/10.1016/j.cbi.2014.10.016.
  • Marklund, S., Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem., 47 (3): 469-474. doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • Matés, JM. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153 (1-3): 83-104. https://doi.org/10.1016/S0300-483X(00)00306-1.
  • Nagpal, I., Abraham, SK. 2017. Ameliorative effects of gallic acid, quercetin and limonene on urethane-induced genotoxicity and oxidative stress in Drosophila melanogaster. Toxicol. Mech. Methods, 27 (4): 286-292. https://doi.org/10.1080/15376516.2016.1278294.
  • Nair, RV., Kulye MS., Kamath, SP. 2018. A single semi-synthetic diet with improved antimicrobial activity for mass rearing of lepidopteran insect pests of cotton and maize. Entomol. Exp. Appl., 167 (4): 377-387. https://doi.org/10.1111/eea.12779.
  • Paglia, DE., Valentine, WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. lab. clin. med., 70 (1): 158-169. https://doi.org/10.5555/uri:pii:0022214367900765.
  • Pajot, P. 1976. Fluorescence of proteins in 6-M guanidine hydrochloride. Euro J Biochem., 63 (1): 263-269. https://doi.org/10.1111/j.1432-1033.1976.tb10228.x.
  • Parvathi, DV., Amritha, AS., Paul, SFD. 2009. Wonder animal model for genetic studies-Drosophila melanogaster-its life cycle and breeding methods-a review introduction. Sri Ramachandra j. Med., 2 (2): 33-38.
  • Pascacio-Villafán, C., Birke, A., Williams, T., Aluja, M. 2017. Modeling the cost-effectiveness of insect rearing on artificial diets: a test with a tephritid fly used in the sterile insect technique. PLoS One, 12 (3): e0173205. https://doi.org/10.1371/journal.pone.0173205.
  • Reece, JB., Urry, LA., Cain, ML., Wasserman, SA., Minorsky, PV., Jackson, RB. 2010. Campbell biology. In Campbell Biology. https://doi.org/10.1007/s13398-014-0173-7.2.
  • Üstündağ, G., Büyükgüzel, K., Büyükgüzel, E. 2020. Penicillin impact on survivorship, development, and adult longevity of Drosophila melanogaster (Diptera: Drosophilidae). Entomol. Sci., 55 (4): 560-569. doi: https://doi.org/10.18474/0749-8004-55.4.560.
  • Ustundağ, G., Buyukguzel, K., Buyukguzel, E. 2019. The effect of niclosamide on certain biological and biochemical properties of Drosophila melanogaster. Eur. J. Biol., 78 (1): 29-39. https://doi.org/10.26650/EurJBiol.2019.0003.
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, MTD., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39 (1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001.
  • Wang, Y., Oberley, LW., Murhammer, DW. 2001. Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic. Biol. Med., 30 (11): 1254-1262. https://doi.org/10.1016/S0891-5849(01)00520-2.
  • Yao, P., Chen, X., Yan, Y., Liu, F., Zhang, Y., Guo, X., Xu, B. 2014. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic. Biol. Med., 68: 335-346. https://doi.org/10.1016/j.freeradbiomed.2013.12.020.
  • Zorlu, T., Nurullahoğlu, ZU., Altuntaş, H. 2018. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). J. Entomol. Res. Soc., 20 (3): 89-103.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Ender Büyükgüzel 0000-0002-4442-5081

Utku Atılgan 0000-0003-4167-1540

Yayımlanma Tarihi 24 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Büyükgüzel, E., & Atılgan, U. (2022). Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi. Karaelmas Fen Ve Mühendislik Dergisi, 12(2), 251-262. https://doi.org/10.7212/karaelmasfen.1111455
AMA Büyükgüzel E, Atılgan U. Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2022;12(2):251-262. doi:10.7212/karaelmasfen.1111455
Chicago Büyükgüzel, Ender, ve Utku Atılgan. “Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 2 (Aralık 2022): 251-62. https://doi.org/10.7212/karaelmasfen.1111455.
EndNote Büyükgüzel E, Atılgan U (01 Aralık 2022) Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi. Karaelmas Fen ve Mühendislik Dergisi 12 2 251–262.
IEEE E. Büyükgüzel ve U. Atılgan, “Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 2, ss. 251–262, 2022, doi: 10.7212/karaelmasfen.1111455.
ISNAD Büyükgüzel, Ender - Atılgan, Utku. “Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi”. Karaelmas Fen ve Mühendislik Dergisi 12/2 (Aralık 2022), 251-262. https://doi.org/10.7212/karaelmasfen.1111455.
JAMA Büyükgüzel E, Atılgan U. Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:251–262.
MLA Büyükgüzel, Ender ve Utku Atılgan. “Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 2, 2022, ss. 251-62, doi:10.7212/karaelmasfen.1111455.
Vancouver Büyükgüzel E, Atılgan U. Antibakteriyel Etkiye Sahip Penisilin G’nin Drosophila melanogaster’in Antioksidan Savunma Sistemi Üzerine Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(2):251-62.