İnceleme Makalesi
BibTex RIS Kaynak Göster

Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites

Yıl 2023, Cilt: 13 Sayı: 1, 52 - 61, 30.06.2023

Öz

In this study, laminated sandwich composites consist of glass fiber reinforced polymer (GFRP) face-sheets (skins) and polyvinyl chloride (PVC) foam were bonded together via conventional hand lay-up method. The effect of fiber orientation (0/90 or +45/-45) was examined in terms of compression and flexural properties. Flatwise (FW) compressive test provided the core dominated properties and only 0/90 fiber-oriented samples were tested. When the average edgewise (EW) compressive strength of (0/90)GFRP/PVC and (+45/-45)GFRP/PVC sandwich composites were compared, both of them showed similar results. Core crushing, local bending, debonding and core shear were observed as the common failure modes in the sandwich structures under bending. In terms flexural response, the 0/90 fiber oriented GFRP skin slightly showed better strength values as compared with +45/-45 fiber-oriented structures. By considering the all-quasi-static tests, it can be concluded that 0/90 and +45/-45 fiber oriented GFRP skins exhibited similar performance and there was no significant superiority for any of them.

Teşekkür

The author specially thanks to METYX company and Mrs. Bikem Direkçi for providing PVC foam core.

Kaynakça

  • ASTM C365, 2003. Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM.
  • ASTM C364, 1999. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, ASTM.
  • ASTM C393/C393M, 2006. Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure, ASTM.
  • Balcıoğlu, H.E. 2018. Flexural Behaviors of Sandwich Composites Produced Using Recycled and Natural Material. Mugla Journal of Science and Technology, 4(1): 64-73.
  • Balıkoğlu, F., Demircioğlu, T.K., Ataş, A. 2022. An Experimental Study on the Flexural Behaviour of Symmetric and Asymmetric Marine Composite Sandwich Beams. Journal of Composite Materials, 56(15): 2311-2325.
  • Balıkoğlu, F., Demircioğlu, T. K., Yıldız, M., Arslan, N., Ataş, A. 2020. Mechanical Performance of Marine Sandwich Composites Subjected to Flatwise Compression and Flexural Loading: Effect of Resin Pins”. Journal of Sandwich Structures & Materials, 22(6): 2030-2048.
  • Calabrese, L., Di Bella, G., Fiore, V. 2016. Manufacture of Marine Composite Sandwich Structures, In Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, pp: 57-78.
  • Crupi, V., Epasto, G., and Guglielmino, E. 2013. Comparison of Aluminium Sandwiches for Lightweight Ship Structures: Honeycomb vs. Foam. Marine Structures, 30: 74–96.
  • Ferreira, R., Pereira, D., Gago, A., Proença, J. 2016. Experimental Characterisation of Cork Agglomerate Core Sandwich Panels for Wall Assemblies in Buildings. Journal of Building Engineering, 5: 194-210.
  • Girish, V.K., and Mohandas, K.N. 2020. Mechanical Characterization of Hybrid Sandwich Composites with Constant PU Foam Core Density. International Journal of Mechanical and Production Engineering Research and Development, 10 (3): 4679–4688.
  • Jaliu, Z.Q., Dong, Zhu., Sun, W.B., Huang, Z.Q. 2022. Flexural Properties of Lightweight Carbon Fiber/Epoxy Resin composite sandwiches with different fiber directions. Materials Research Express, 9 (2): 026506.
  • Kaboglu, C., Yu, L., Mohagheghian, I. 2018. Effects of the Core Density on the Quasi-static Flexural and Ballistic Performance of Fiber-Composite Skin/Foam-Core Sandwich Structures. Journal of Materials Science, 53: 6393–6414.
  • Lei, H., Yao, K., Wen, W., Zhou, H., Fang, D. 2016. Experimental and Numerical Investigation on the Crushing Behavior of Sandwich Composite Under Edgewise Compression Loading. Composites Part B: Engineering, 94: 34–44.
  • Mane, J. V., Chandra, S., Sharma, S., Ali, H., Chavan, V. M., Manjunath, B. S., Patel, R. J. 2017. Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates-An Experimental Study. In Procedia Engineering, 173: 726–731.
  • Oterkus, E., Diyaroglu, C., De Meo, D., Allegri, G. 2016. Fracture Modes, Damage Tolerance and Failure Mitigation in Marine Composites, In Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, pp:79-101.
  • Palomba, G., Epasto, G., Crupi, V. 2021. Lightweight Sandwich Structures for Marine Applications: A Review. Mechanics of Advanced Materials and Structures, Ahead-of-Print, pp. 1-21.
  • Pareta, A. S., Gupta, R., Panda, S. K. 2020. Experimental Investigation on Fly Ash Particulate Reinforcement for Property Enhancement of PU Foam Core FRP Sandwich Composites. Composites Science and Technology, 195: 108207.
  • Radhakrishnan, G., Mathialagan, S. 2022. Effect of fiber orientation on mechanical behavior of glass fiber reinforced polyethylene terephthalate foam sandwich composite. Mater. Today Proc.62(2): 624-628.
  • Samlal, S., Santhanakrishnan, R., Paulson, V., Goyal, C. 2020. Flexural Property Evaluation of Foam Core Sandwich Panel with Carbon/Kevlar Epoxy Hybrid Facesheets. Materials Today: Proceedings.
  • Shen, W., Luo, B., Yan, R., Zeng, H., Xu, L. 2017. The Mechanical Behavior of Sandwich Composite Joints for Ship Structure. Ocean Engineering, 144: 78-89.
  • Uzay, Ç., Geren, N. 2020. Effect of Stainless-Steel Wire Mesh Embedded into Fibre-Reinforced Polymer Facings on Flexural Characteristics of Sandwich Structures. Journal of Reinforced Plastics and Composites, 39(15-16): 613-633.
  • Xiao, Y., Hu, Y., Zhang, J., Song, C., Huang, X., Yu, J., Liu,Z. 2018. The bending responses of sandwich panels with aluminium honeycomb core and CFRP skins used in electric vehicle body. Adv. Mater. Sci. Eng.

Elyaf Yöneliminin Cam Elyaf Takviyeli Polimer (CETP)/PVC Sandviç Kompozitlerin Mekanik Özellikleri Üzerine Etkisi

Yıl 2023, Cilt: 13 Sayı: 1, 52 - 61, 30.06.2023

Öz

Bu çalışmada, cam elyaf takviyeli polimer (CETP) yüzey tabakaları ve polivinil klorür (PVC) köpükten oluşan lamine sandviç kompozitler, geleneksel el yatırma yöntemi ile üretilmiştir. Fiber oryantasyonunun (0/90 veya +45/-45) etkisi, basma ve eğme özellikleri açısından incelenmiştir. Düzlemsel (yüzey-FW) basma testi, çekirdek (ara tabaka) özelliklerini domine ettiği için sadece 0/90 fiber yönelimli numuneler test edilmiştir. (0/90)CETP/PVC ve (+45/-45)CETP/PVC sandviç kompozitlerin ortalama yanal (EW) basma dayanımları karşılaştırıldığında, her ikisi de çok benzer sonuçlar göstermiştir. Sandviç yapılarda eğme yükü altında ortak çökme/kırılma tipleri olarak köpük ezilmesi, lokal eğilme, sandviç bileşenlerinin ayrışması ve çekirdek yapının kaymaya uğraması gözlenmiştir. Eğme davranışı açısından, 0/90 fiber yönelimli GFRP yüzey plaka, +45/-45 fiber yönelimli yapılara kıyasla az da olsa daha iyi mukavemet göstermiştir. Tüm statik testler göz önüne alındığında, 0/90 ve +45/-45 fiber yönelimli CETP yüzey plakalarının benzer performans sergiledikleri ve hiçbirinde belirgin bir üstünlük olmadığı sonucuna varılabilir.

Kaynakça

  • ASTM C365, 2003. Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM.
  • ASTM C364, 1999. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, ASTM.
  • ASTM C393/C393M, 2006. Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure, ASTM.
  • Balcıoğlu, H.E. 2018. Flexural Behaviors of Sandwich Composites Produced Using Recycled and Natural Material. Mugla Journal of Science and Technology, 4(1): 64-73.
  • Balıkoğlu, F., Demircioğlu, T.K., Ataş, A. 2022. An Experimental Study on the Flexural Behaviour of Symmetric and Asymmetric Marine Composite Sandwich Beams. Journal of Composite Materials, 56(15): 2311-2325.
  • Balıkoğlu, F., Demircioğlu, T. K., Yıldız, M., Arslan, N., Ataş, A. 2020. Mechanical Performance of Marine Sandwich Composites Subjected to Flatwise Compression and Flexural Loading: Effect of Resin Pins”. Journal of Sandwich Structures & Materials, 22(6): 2030-2048.
  • Calabrese, L., Di Bella, G., Fiore, V. 2016. Manufacture of Marine Composite Sandwich Structures, In Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, pp: 57-78.
  • Crupi, V., Epasto, G., and Guglielmino, E. 2013. Comparison of Aluminium Sandwiches for Lightweight Ship Structures: Honeycomb vs. Foam. Marine Structures, 30: 74–96.
  • Ferreira, R., Pereira, D., Gago, A., Proença, J. 2016. Experimental Characterisation of Cork Agglomerate Core Sandwich Panels for Wall Assemblies in Buildings. Journal of Building Engineering, 5: 194-210.
  • Girish, V.K., and Mohandas, K.N. 2020. Mechanical Characterization of Hybrid Sandwich Composites with Constant PU Foam Core Density. International Journal of Mechanical and Production Engineering Research and Development, 10 (3): 4679–4688.
  • Jaliu, Z.Q., Dong, Zhu., Sun, W.B., Huang, Z.Q. 2022. Flexural Properties of Lightweight Carbon Fiber/Epoxy Resin composite sandwiches with different fiber directions. Materials Research Express, 9 (2): 026506.
  • Kaboglu, C., Yu, L., Mohagheghian, I. 2018. Effects of the Core Density on the Quasi-static Flexural and Ballistic Performance of Fiber-Composite Skin/Foam-Core Sandwich Structures. Journal of Materials Science, 53: 6393–6414.
  • Lei, H., Yao, K., Wen, W., Zhou, H., Fang, D. 2016. Experimental and Numerical Investigation on the Crushing Behavior of Sandwich Composite Under Edgewise Compression Loading. Composites Part B: Engineering, 94: 34–44.
  • Mane, J. V., Chandra, S., Sharma, S., Ali, H., Chavan, V. M., Manjunath, B. S., Patel, R. J. 2017. Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates-An Experimental Study. In Procedia Engineering, 173: 726–731.
  • Oterkus, E., Diyaroglu, C., De Meo, D., Allegri, G. 2016. Fracture Modes, Damage Tolerance and Failure Mitigation in Marine Composites, In Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, Cambridge, pp:79-101.
  • Palomba, G., Epasto, G., Crupi, V. 2021. Lightweight Sandwich Structures for Marine Applications: A Review. Mechanics of Advanced Materials and Structures, Ahead-of-Print, pp. 1-21.
  • Pareta, A. S., Gupta, R., Panda, S. K. 2020. Experimental Investigation on Fly Ash Particulate Reinforcement for Property Enhancement of PU Foam Core FRP Sandwich Composites. Composites Science and Technology, 195: 108207.
  • Radhakrishnan, G., Mathialagan, S. 2022. Effect of fiber orientation on mechanical behavior of glass fiber reinforced polyethylene terephthalate foam sandwich composite. Mater. Today Proc.62(2): 624-628.
  • Samlal, S., Santhanakrishnan, R., Paulson, V., Goyal, C. 2020. Flexural Property Evaluation of Foam Core Sandwich Panel with Carbon/Kevlar Epoxy Hybrid Facesheets. Materials Today: Proceedings.
  • Shen, W., Luo, B., Yan, R., Zeng, H., Xu, L. 2017. The Mechanical Behavior of Sandwich Composite Joints for Ship Structure. Ocean Engineering, 144: 78-89.
  • Uzay, Ç., Geren, N. 2020. Effect of Stainless-Steel Wire Mesh Embedded into Fibre-Reinforced Polymer Facings on Flexural Characteristics of Sandwich Structures. Journal of Reinforced Plastics and Composites, 39(15-16): 613-633.
  • Xiao, Y., Hu, Y., Zhang, J., Song, C., Huang, X., Yu, J., Liu,Z. 2018. The bending responses of sandwich panels with aluminium honeycomb core and CFRP skins used in electric vehicle body. Adv. Mater. Sci. Eng.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Bahar Baştürk 0000-0002-4027-1935

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 1

Kaynak Göster

APA Baştürk, B. (2023). Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites. Karaelmas Fen Ve Mühendislik Dergisi, 13(1), 52-61. https://doi.org/10.7212/karaelmasfen.1177185
AMA Baştürk B. Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2023;13(1):52-61. doi:10.7212/karaelmasfen.1177185
Chicago Baştürk, Bahar. “Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites”. Karaelmas Fen Ve Mühendislik Dergisi 13, sy. 1 (Haziran 2023): 52-61. https://doi.org/10.7212/karaelmasfen.1177185.
EndNote Baştürk B (01 Haziran 2023) Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites. Karaelmas Fen ve Mühendislik Dergisi 13 1 52–61.
IEEE B. Baştürk, “Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites”, Karaelmas Fen ve Mühendislik Dergisi, c. 13, sy. 1, ss. 52–61, 2023, doi: 10.7212/karaelmasfen.1177185.
ISNAD Baştürk, Bahar. “Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites”. Karaelmas Fen ve Mühendislik Dergisi 13/1 (Haziran 2023), 52-61. https://doi.org/10.7212/karaelmasfen.1177185.
JAMA Baştürk B. Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:52–61.
MLA Baştürk, Bahar. “Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites”. Karaelmas Fen Ve Mühendislik Dergisi, c. 13, sy. 1, 2023, ss. 52-61, doi:10.7212/karaelmasfen.1177185.
Vancouver Baştürk B. Effect of Fiber Orientation on the Mechanical Properties of Glass Fiber Reinforced Polymer (GFRP)/PVC Sandwich Composites. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(1):52-61.