Araştırma Makalesi
BibTex RIS Kaynak Göster

Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID)

Yıl 2024, Cilt: 14 Sayı: 1, 23 - 27, 29.04.2024

Öz

Pesticides are frequently utilized in the cultivation of agricultural products for human consumption to prevent / minimize the detrimental effects caused by pests and to keep the yield at the desired levels at harvest time. Besides the benefits of pesticides, unconscious use of pesticides causes the occurrence of different diseases. Monitoring the levels of pesticide residues is of vital importance for the environment, human, and other living organisms. In the present study, an analytical method was reported for the determination of mefenpyr-diethyl (MFD) as a member of the herbicide group by gas chromatography flame ionization detector (GC-FID) system with high accuracy and sensitivity. An in-column temperature program was established to effectively separate the analyte, and MFD was determined at a retention time of 5.2 min. The limit of detection (LOD), the limit of quantitation (LOQ), and the linear working range were found to be 0.01 mg/L, 0.04 mg/L, and 0.07-29.7 mg/L, respectively. The applicability of the determination method was investigated by recovery studies with barley, oat, and corn silk matrices. No analytical signal was recorded for MFD in blank samples of all three species. Recovery results close to 100% showed that MFD could be determined with high accuracy in barley, oat, and corn silk matrices.

Etik Beyan

No ethical approval is required.

Destekleyen Kurum

None

Teşekkür

None

Kaynakça

  • Aparecida, M., Campos Ventura-Camargo, B., Miyuki, M. 2013. Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health. In Herbicides - Current Research and Case Studies in Use. InTech. Chapter 16: 400-443. DOI: 10.5772/55851
  • Bianchi, L., Perissato, SM., Anunciato, VM., Dias, RC., Gomes, DM., Carbonari, CA., Velini, ED. 2021. Stimulation action of mefenpyr-diethyl on soybean, wheat, and signal grass plants. Journal of Environmental Science and Health, Part B, 56(2): 163–167. DOI: 10.1080/03601234.2020.1853459
  • Budiman, H., Nuryatini, OZ. 2015. Comparison between GC-TCD and GC-FID for the determination of propane in gas mixture. Procedia Chemistry, 16: 465–472. DOI: 10.1016/j.proche.2015.12.080
  • Chormey, DS. 2021. Determination of Fenobucarb and Chlorbenside in Wastewater and Lake Water Samples by Gas Chromatography Mass Spectrometry. European Journal of Science and Technology, 21: 518–521. DOI:10.31590/ejosat.928133
  • Chormey, DS., Karakuş, Y., Karayaka, S., Özsöyler, Ç., Bozdoğan, AE., Bakırdere, S. 2017. Multivariate optimization of dispersive liquid-liquid microextraction for the determination of paclobutrazol and triflumizole in water by GC-MS. Journal of Separation Science, 40(23): 4541–4548. DOI: 10.1002/jssc.201700853
  • De Souza Pinheiro, A., De Andrade, J. B. 2009. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 79(5): 1354–1359. DOI:10.1016/j.talanta.2009.06.002
  • Durak, BY., Chormey, DS., Firat, M., Bakirdere, S. 2020. Validation of ultrasonic-assisted switchable solvent liquid phase microextraction for trace determination of hormones and organochlorine pesticides by GC–MS and combination with QuEChERS. Food Chemistry, 305: 125487. DOI: 10.1016/j.foodchem.2019.125487
  • El Boukili, A., Loudiyi, N., El Bazaoui, A., El Hourch, A., Taibi, M., El Boukili, A. 2018. Adsorption and Desorption Behavior of Herbicide Mefenpyr-diethyl in the Agricultural Soils of Morocco. Mediterranean Journal of Chemistry, 7(5): 386–395. DOI: 10.13171/mjc7519111210255aeb
  • Erarpat, S., Cağlak, A., Bodur, S., Chormey, SD., Engin, ÖG., Bakırdere, S. 2019. Simultaneous Determination of Fluoxetine, Estrone, Pesticides, and Endocrine Disruptors in Wastewater by Gas Chromatography–Mass Spectrometry (GC–MS) Following Switchable Solvent–Liquid Phase Microextraction (SS–LPME). Analytical Letters, 52(5): 869–878. DOI: 10.1080/00032719.2018.1505897
  • Kapukıran, F., Fırat, M., Chormey, DS., Bakırdere, S., Özdoğan, N. 2019. Accurate and Sensitive Determination Method for Procymidone and Chlorflurenol in Municipal Wastewater, Medical Wastewater and Irrigation Canal Water by GC–MS After Vortex Assisted Switchable Solvent Liquid Phase Microextraction. Bulletin of Environmental Contamination and Toxicology, 102(6): 848–853. DOI: 10.1007/s00128-019-02618-w
  • Kettles, MK., Browning, SR., Prince, TS., Horstman, SW. 1997. Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environmental Health Perspectives, 105(11): 1222–1227. DOI: 10.1289/ehp.971051222
  • Li, Y., Guo, R., Liang, X., Yao, B., Yan, S., Guo, Y., Han, Y., Cui, J. 2023. Pollution characteristics, ecological and health risks of herbicides in a drinking water source and its inflowing rivers in North China. Environmental Pollution, 334: 122130. DOI:10.1016/j.envpol.2023.122130
  • Lushchak, VI., Matviishyn, TM., Husak, VV., Storey, JM., Storey, KB. 2018. Pesticide toxicity: a mechanistic approach. EXCLI Journal, 17: 1101–1136. DOI: 10.17179/excli2018-1710
  • Maes, C., Meersmans, J., Lins, L., Bouquillon, S., Fauconnier, ML. 2021. Essential Oil-based bioherbicides: Human health risks analysis. International Journal of Molecular Sciences, 22(17): 9396. DOI: 10.3390/ijms22179396
  • Özcan, R., Büyükpınar, Ç., Bakırdere, S. 2020. Determination of fipronil and bixafen pesticides residues using gas chromatography mass spectroscopy with matrix matching calibration strategy after binary dispersive liquid-liquid microextraction. Journal of Environmental Science and Health, Part B, 55(12): 1041–1047. DOI: 10.1080/03601234.2020.1808417
  • Rosini, G., Borzatta, V., Paolucci, C., Righi, P. 2008. Comparative assessment of an alternative route to (5-benzylfuran-3-yl)methanol (Elliott’s alcohol), a key intermediate for the industrial production of resmethrins. Green Chemistry, 10(11): 1146. DOI: 10.1039/b809088b
  • Ross, MK., Carr, RL. 2019. Pyrethroid Insecticides: An Update. In Encyclopedia of Environmental Health (Second Edition), 429–435. DOI: 10.1016/B978-0-12-409548-9.11819-6
  • Serbest, Z., Gorduk, O., Sahin, Y. 2023. Electrochemical sensing of serotonin in food products by electrochemically fabricated s-doped graphene oxide electrode. Journal of Analytical Chemistry, 78(9): 1267–1279. DOI: 10.1134/S1061934823090125
  • Sun, J., Cui, D., Guan, F., Zhang, L., Chen, X., Li, H. 2014. Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator. Nanoscale Research Letters, 9(1): 576. DOI: 10.1186/1556-276X-9-576
  • Tandon, S., Kumar, S., Sand, NK. 2015. Development and validation of GC-ECD method for the determination of metamitron in soil. International Journal of Analytical Chemistry, 2015: 1–5. DOI: 10.1155/2015/592763
  • Taylor, VL., Cummins, I., Brazier-Hicks, M., Edwards, R. 2013. Protective responses induced by herbicide safeners in wheat. Environmental and Experimental Botany, 88: 93–99. DOI: 10.1016/j.envexpbot.2011.12.030
  • Tekin, Z., Özdoğan, N., Karlıdağ, NE., Bakırdere, S. 2023. Stearic acid functionalized ıron nanoparticle based magnetic solid-phase extraction (MSPE) for the determination of oxadiazon in purslane by high-performance liquid chromatography (HPLC). Analytical Letters, 56(1): 120–131. DOI: 10.1080/00032719.2022.2089887
  • Tian, F., Liu, W., Fang, H., An, M., Duan, S. 2014. Determination of six organophosphorus pesticides in water by single-drop microextraction coupled with GC-NPD. Chromatographia, 77(5–6): 487–492. DOI: 10.1007/s10337-013-2609-1
  • Umetsu, N., Shirai, Y. 2020. Development of novel pesticides in the 21st century. 45(2): 54–74. DOI: 10.1584/jpestics.D20-201
  • Weiss, B., Amler, S., Amler, RW. 2004. Pesticides. Pediatrics, 113(3): 1030–1036. DOI: 10.1542/peds.113.S3.1030
  • Yağmuroğlu, O. 2023. Accurate and sensitive determination of Sb(III) in water samples using UV–VIS spectrophotometry after simultaneous complexation and preconcentration with deep eutectic solvent/DTZ probe-based liquid–liquid microextraction. Environmental Monitoring and Assessment, 195(1): 191. DOI: 10.1007/s10661-022-10809-y
  • Yang, C., Lim, W., Song, G. 2021. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248: 109103. DOI: 10.1016/j.cbpc.2021.109103

Mefenpir-dietilin Arpa, Yulaf ve Mısır Püskülü Matrikslerinde Gaz Kromatografisi - Alev İyonizasyon Dedektörü (GC-FID) ile Doğru ve Hassas Tayini

Yıl 2024, Cilt: 14 Sayı: 1, 23 - 27, 29.04.2024

Öz

İnsan tüketiminde olan zirai ürünlerin yetiştirilmesinde zararlıların neden olacağı bozucu etkileri önlemek / en aza indirmek ve hasat sırasında verimin istenen seviyelerde tutmak amacıyla pestisitlerden sıklıkla yararlanılmaktadır. Pestisitlerin faydalarının yanı sıra, bilinçsiz kullanımı farklı hastalıkların ortaya çıkmasına neden olmaktadır. Pestisit kalıntılarının seviyelerinin izlenmesi çevre, insanlar ve diğer canlı organizmalar için hayati önem taşımaktadır. Bu çalışmada, herbisit grubunun bir üyesi olan mefenpir-dietilin (MFD) gaz kromatografisi alev iyonizasyon dedektörü (GC-FID) sistemi ile yüksek doğruluk ve hassasiyetle tayini için analitik bir yöntem rapor edilmiştir. Analitin etkili bir şekilde ayrılması için kolon içi sıcaklık programı oluşturulmuş ve 5,2 dakikalık bir alıkonma süresinde MFD tayin edilmiştir. Gözlenebilme limiti (GL), tayin limiti (TL) ve doğrusal çalışma aralığı sırasıyla 0,01 mg/L, 0,04 mg/L, ve 0,07-29,7 mg/L olarak bulunmuştur. Tayin yönteminin uygulanabilirliği arpa, yulaf ve mısır püskülü örnekleri ile yapılan geri kazanım çalışmaları ile araştırılmıştır. Her üç türün kör numunelerinde MFD için analitik bir sinyal kaydedilmemiştir. %100'e yakın geri kazanım sonuçları arpa, yulaf ve mısır püskülü örneklerinde yüksek doğrulukta MFD’nin tayin edilebileceğini göstermiştir.

Kaynakça

  • Aparecida, M., Campos Ventura-Camargo, B., Miyuki, M. 2013. Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health. In Herbicides - Current Research and Case Studies in Use. InTech. Chapter 16: 400-443. DOI: 10.5772/55851
  • Bianchi, L., Perissato, SM., Anunciato, VM., Dias, RC., Gomes, DM., Carbonari, CA., Velini, ED. 2021. Stimulation action of mefenpyr-diethyl on soybean, wheat, and signal grass plants. Journal of Environmental Science and Health, Part B, 56(2): 163–167. DOI: 10.1080/03601234.2020.1853459
  • Budiman, H., Nuryatini, OZ. 2015. Comparison between GC-TCD and GC-FID for the determination of propane in gas mixture. Procedia Chemistry, 16: 465–472. DOI: 10.1016/j.proche.2015.12.080
  • Chormey, DS. 2021. Determination of Fenobucarb and Chlorbenside in Wastewater and Lake Water Samples by Gas Chromatography Mass Spectrometry. European Journal of Science and Technology, 21: 518–521. DOI:10.31590/ejosat.928133
  • Chormey, DS., Karakuş, Y., Karayaka, S., Özsöyler, Ç., Bozdoğan, AE., Bakırdere, S. 2017. Multivariate optimization of dispersive liquid-liquid microextraction for the determination of paclobutrazol and triflumizole in water by GC-MS. Journal of Separation Science, 40(23): 4541–4548. DOI: 10.1002/jssc.201700853
  • De Souza Pinheiro, A., De Andrade, J. B. 2009. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 79(5): 1354–1359. DOI:10.1016/j.talanta.2009.06.002
  • Durak, BY., Chormey, DS., Firat, M., Bakirdere, S. 2020. Validation of ultrasonic-assisted switchable solvent liquid phase microextraction for trace determination of hormones and organochlorine pesticides by GC–MS and combination with QuEChERS. Food Chemistry, 305: 125487. DOI: 10.1016/j.foodchem.2019.125487
  • El Boukili, A., Loudiyi, N., El Bazaoui, A., El Hourch, A., Taibi, M., El Boukili, A. 2018. Adsorption and Desorption Behavior of Herbicide Mefenpyr-diethyl in the Agricultural Soils of Morocco. Mediterranean Journal of Chemistry, 7(5): 386–395. DOI: 10.13171/mjc7519111210255aeb
  • Erarpat, S., Cağlak, A., Bodur, S., Chormey, SD., Engin, ÖG., Bakırdere, S. 2019. Simultaneous Determination of Fluoxetine, Estrone, Pesticides, and Endocrine Disruptors in Wastewater by Gas Chromatography–Mass Spectrometry (GC–MS) Following Switchable Solvent–Liquid Phase Microextraction (SS–LPME). Analytical Letters, 52(5): 869–878. DOI: 10.1080/00032719.2018.1505897
  • Kapukıran, F., Fırat, M., Chormey, DS., Bakırdere, S., Özdoğan, N. 2019. Accurate and Sensitive Determination Method for Procymidone and Chlorflurenol in Municipal Wastewater, Medical Wastewater and Irrigation Canal Water by GC–MS After Vortex Assisted Switchable Solvent Liquid Phase Microextraction. Bulletin of Environmental Contamination and Toxicology, 102(6): 848–853. DOI: 10.1007/s00128-019-02618-w
  • Kettles, MK., Browning, SR., Prince, TS., Horstman, SW. 1997. Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environmental Health Perspectives, 105(11): 1222–1227. DOI: 10.1289/ehp.971051222
  • Li, Y., Guo, R., Liang, X., Yao, B., Yan, S., Guo, Y., Han, Y., Cui, J. 2023. Pollution characteristics, ecological and health risks of herbicides in a drinking water source and its inflowing rivers in North China. Environmental Pollution, 334: 122130. DOI:10.1016/j.envpol.2023.122130
  • Lushchak, VI., Matviishyn, TM., Husak, VV., Storey, JM., Storey, KB. 2018. Pesticide toxicity: a mechanistic approach. EXCLI Journal, 17: 1101–1136. DOI: 10.17179/excli2018-1710
  • Maes, C., Meersmans, J., Lins, L., Bouquillon, S., Fauconnier, ML. 2021. Essential Oil-based bioherbicides: Human health risks analysis. International Journal of Molecular Sciences, 22(17): 9396. DOI: 10.3390/ijms22179396
  • Özcan, R., Büyükpınar, Ç., Bakırdere, S. 2020. Determination of fipronil and bixafen pesticides residues using gas chromatography mass spectroscopy with matrix matching calibration strategy after binary dispersive liquid-liquid microextraction. Journal of Environmental Science and Health, Part B, 55(12): 1041–1047. DOI: 10.1080/03601234.2020.1808417
  • Rosini, G., Borzatta, V., Paolucci, C., Righi, P. 2008. Comparative assessment of an alternative route to (5-benzylfuran-3-yl)methanol (Elliott’s alcohol), a key intermediate for the industrial production of resmethrins. Green Chemistry, 10(11): 1146. DOI: 10.1039/b809088b
  • Ross, MK., Carr, RL. 2019. Pyrethroid Insecticides: An Update. In Encyclopedia of Environmental Health (Second Edition), 429–435. DOI: 10.1016/B978-0-12-409548-9.11819-6
  • Serbest, Z., Gorduk, O., Sahin, Y. 2023. Electrochemical sensing of serotonin in food products by electrochemically fabricated s-doped graphene oxide electrode. Journal of Analytical Chemistry, 78(9): 1267–1279. DOI: 10.1134/S1061934823090125
  • Sun, J., Cui, D., Guan, F., Zhang, L., Chen, X., Li, H. 2014. Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator. Nanoscale Research Letters, 9(1): 576. DOI: 10.1186/1556-276X-9-576
  • Tandon, S., Kumar, S., Sand, NK. 2015. Development and validation of GC-ECD method for the determination of metamitron in soil. International Journal of Analytical Chemistry, 2015: 1–5. DOI: 10.1155/2015/592763
  • Taylor, VL., Cummins, I., Brazier-Hicks, M., Edwards, R. 2013. Protective responses induced by herbicide safeners in wheat. Environmental and Experimental Botany, 88: 93–99. DOI: 10.1016/j.envexpbot.2011.12.030
  • Tekin, Z., Özdoğan, N., Karlıdağ, NE., Bakırdere, S. 2023. Stearic acid functionalized ıron nanoparticle based magnetic solid-phase extraction (MSPE) for the determination of oxadiazon in purslane by high-performance liquid chromatography (HPLC). Analytical Letters, 56(1): 120–131. DOI: 10.1080/00032719.2022.2089887
  • Tian, F., Liu, W., Fang, H., An, M., Duan, S. 2014. Determination of six organophosphorus pesticides in water by single-drop microextraction coupled with GC-NPD. Chromatographia, 77(5–6): 487–492. DOI: 10.1007/s10337-013-2609-1
  • Umetsu, N., Shirai, Y. 2020. Development of novel pesticides in the 21st century. 45(2): 54–74. DOI: 10.1584/jpestics.D20-201
  • Weiss, B., Amler, S., Amler, RW. 2004. Pesticides. Pediatrics, 113(3): 1030–1036. DOI: 10.1542/peds.113.S3.1030
  • Yağmuroğlu, O. 2023. Accurate and sensitive determination of Sb(III) in water samples using UV–VIS spectrophotometry after simultaneous complexation and preconcentration with deep eutectic solvent/DTZ probe-based liquid–liquid microextraction. Environmental Monitoring and Assessment, 195(1): 191. DOI: 10.1007/s10661-022-10809-y
  • Yang, C., Lim, W., Song, G. 2021. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 248: 109103. DOI: 10.1016/j.cbpc.2021.109103
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Serbest 0000-0003-2303-0408

Yayımlanma Tarihi 29 Nisan 2024
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 23 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Serbest, H. (2024). Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID). Karaelmas Fen Ve Mühendislik Dergisi, 14(1), 23-27. https://doi.org/10.7212/karaelmasfen.1393684
AMA Serbest H. Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID). Karaelmas Fen ve Mühendislik Dergisi. Nisan 2024;14(1):23-27. doi:10.7212/karaelmasfen.1393684
Chicago Serbest, Hakan. “Accurate and Sensitive Determination of Mefenpyr-Diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID)”. Karaelmas Fen Ve Mühendislik Dergisi 14, sy. 1 (Nisan 2024): 23-27. https://doi.org/10.7212/karaelmasfen.1393684.
EndNote Serbest H (01 Nisan 2024) Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID). Karaelmas Fen ve Mühendislik Dergisi 14 1 23–27.
IEEE H. Serbest, “Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID)”, Karaelmas Fen ve Mühendislik Dergisi, c. 14, sy. 1, ss. 23–27, 2024, doi: 10.7212/karaelmasfen.1393684.
ISNAD Serbest, Hakan. “Accurate and Sensitive Determination of Mefenpyr-Diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID)”. Karaelmas Fen ve Mühendislik Dergisi 14/1 (Nisan 2024), 23-27. https://doi.org/10.7212/karaelmasfen.1393684.
JAMA Serbest H. Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID). Karaelmas Fen ve Mühendislik Dergisi. 2024;14:23–27.
MLA Serbest, Hakan. “Accurate and Sensitive Determination of Mefenpyr-Diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID)”. Karaelmas Fen Ve Mühendislik Dergisi, c. 14, sy. 1, 2024, ss. 23-27, doi:10.7212/karaelmasfen.1393684.
Vancouver Serbest H. Accurate and Sensitive Determination of Mefenpyr-diethyl in Barley, Oat and Corn Silk Matrices by Gas Chromatography – Flame Ionization Detector (GC–FID). Karaelmas Fen ve Mühendislik Dergisi. 2024;14(1):23-7.