Araştırma Makalesi
BibTex RIS Kaynak Göster

The Relationship Between Redox-Sensitive Element Behaviors and Redox Conditions in Miocene Aged Bituminous Claystones of the Ilgın (Konya) Basin

Yıl 2024, Cilt: 14 Sayı: 2, 61 - 84, 23.07.2024

Öz

In this study, the redox-sensitive trace elements in the Miocene-aged bituminous claystones rich in shallow organic matter (%TOC: 14.52-44.44; avg: 31.24) in the Ilgın basin (Konya) were investigated. The elements studied include Vanadium (V), Uranium (U), and Molybdenum (Mo), as well as Zinc (Zn), Nickel (Ni), Copper (Cu), and Cobalt (Co), aiming to analyze their geochemical behaviors. Additionally, the influence of the basin’s redox conditions on organic matter accumulation was examined. For this purpose, 14 samples were systematically collected from the bituminous claystones, starting from the lignite level at the base up to the top. In the investigation of the behavior of redox-sensitive elements in the Miocene-aged bituminous claystones in the Ilgın area, the relationships between major and trace elements and their total organic carbon (%TOC) content were examined. Major and trace element analyses were conducted on samples using an ICP-OES device, and %TOC analyses were performed using a Rock Eval VI device. In the examined bituminous rocks, there are moderate correlations between %TOC and %Mo (r=0.529); weak and very weak correlations are observed for Cu (r=-0.230), Ni (r=-0.030), Zn (r=0.216), U (r=0.083), V (r=0.124), and Co (r=0.076). This indicates that the enrichment of these elements in sediments and sapropels from water masses does not involve organometallic ligands in humic acids except for Mo. Very weak correlation relationships of Fe with U (r=0.204), Ni (r=0.029), and Zn (r=-0.142) indicate that the enrichment of U and Zn in sapropel is not influenced by pyrite. However, the moderate correlation of Fe with Co (r=0.535) and strong correlation with Mo (r=0.722) suggest that the enrichment of Co and Mo in sapropel is influenced by pyrite. Very weak correlations between Mn and Cu (r=-0.562), Zn (r=-0.163), Ni (r=-0.318), V (r=-0.243), U (r=-0.142), and Mo (r=-0.600) indicate that manganese oxyhydroxides play no role in the diffusion and enrichment of these elements from water masses to sapropel. Sulfur shows very weak correlations with Ni (r=-0.121), V (r=-0.177), and Zn (r=-0.354); weak correlations with Cu (r=0.290) and U (r=0.302); moderate correlation with Co (r=0.476); and strong correlation with Mo (r=0.729). This suggests that Co precipitates as CoS and Mo as MoS2, while Cu, Zn, Ni, U, and V do not enrich as sulfides. A very strong correlation (r=0.929) between Fe and S indicates that Fe precipitates as pyrite (FeS2), suggesting an anoxic redox condition. The redox conditions in the basin are oxic/suboxic and anoxic based on Th/U ratios in all samples, except for samples RE-1 and RE-7; based on U/Th ratios, except for samples RE-1 and RE-7; and based on V/V+Ni ratios, except for samples RE-1, 2, 3, 6, and 12.

Kaynakça

  • Adams, JAS., Weaver, CE. 1958. Thorium to uranium ratios as indications of sedimentary processes: Example of concept of geochemical facies. American Association of Petroleum Geologists Bulletin, 42: 387-430. Doi: 10.1306/0BDA5A89-16BD-11D7-8645000102C1865D
  • Algeo, TJ., Maynard, JB. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. Doi: 0.1016/j.chemgeo.2003.12.009
  • Algeo, TJ., Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18. Doi: 10.1016/j.chemgeo.2011.09.002
  • Berryman, RR. 2008. Constraints on development of anoxia through geochemical facies mapping of Devonian black shales in the Midcontinent: Master of Science Thesis, Oklahoma State University.
  • Brumsack, HJ. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344–361. Doi: 10.1016/j.palaeo.2005.05.011
  • Calvert, SE., Pedersen, TF. 1993. Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol., 113: 67 – 88. Doi: 10.1016/0025-3227(93)90150-T
  • Canfield, DE. 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114: 315 – 329. Doi: 10.1016/0009-2541(94)90061-2
  • Cruse, A., Lyons, T. 2004. Trace metal record of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chem.Geol., 206: 319-345. Doi: 10.1016/j.chemgeo.2003.12.010
  • Crusius, J., Calvert, S., Pedersen, T., Sage, D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett., 145: 65-78. Doi: 10.1016/S0012-821X(96)00204-X
  • Dean, WE., Gardner, JV., Piper, DZ. 1997. Inorganic geochemical indicators of glacial –interglacial changes in productivity and anoxia of the California continental margin. Geochim. Cosmochim. Acta, 61: 4507 – 4518. Doi: 10.1016/S0016-7037(97)00237-8
  • Dean, WE., Piper, DZ., Peterson, LC. 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: a record of water-column anoxia and climate. Geology, 27: 507-510. Doi: 10.1130/0091-7613(1999)027<0507:MAICBS>2.3.CO;2
  • Deng, HW., Qian, K. 1993. Analysis on sedimentary geochemistry and environment, Science Technology Press, Gansu: 15–85 (in Chinese).
  • Ekwunife, IC. 2017. Assessing MudrocK characteristics, high-resolution chemostratigraphy, and sequence stratigraphy of the Woodford Shale in the Mcalister Cemetery Quarry, Ardmore Basin, Oklahoma. Master of Science Thesis, University of Oklahoma.
  • Engin, H. 2013. Kürnüç (Göynük/Bolu) bitümlü şeyllerinin redoksa duyarlı iz element incelemeleri, Ankara Üniversitesi Fen bilimleri Enstitüsü Yüksek Lisans Tezi. 147 s. Yayımlanmamış.
  • Ernst, TW. 1970. Geochemical facies analysis, Elsevier, Amsterdam, 152 p.
  • Hatch, JR., Leventhal, JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol., 99: 65–82. Doi: 10.1016/0009-2541(92)90031-Y
  • Huerta-Diaz, MA., Morse, JW. 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56: 2681-2702. Doi: 10.1016/0016-7037(92)90353-K
  • Hüseyinca, MY., Eren, Y. 2007. Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. S.Ü. Müh.-Mim. Fak. Derg., 23: 1-2.
  • Jones, B., Manning, DAC. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 111: 111–129. Doi: 10.1016/0009-2541(94)90085-X
  • Karayiğit, AI., Akgün, F., Gayer, RA., Temel, A. 1999. Quality, Palynology, And Paleoenvironmental Interpretion of The Ilgın Lignite, Turkey. International Journal of Coal Geology, 38: 219‐236. Doi: 10.1016/S0166-5162(98)00015-9
  • Koralay, DB., Sarı, A. 2013. Redox Conditions and Metal-Organic Carbon Relations of Eocene Bituminous Shales (Veliler/Mengen-Bolu/Turkey). Energy Sources, Part A, 35(17), 1597-1607. Doi: 10.1080/15567036.2011.551917
  • Marolf, NJ. 2014. Redox sensitive trace elements document chemical depositional environment and post-depositional oxidation of the Ediacaran Biri Formation, southern Norway. Master of Science Thesis, Colorado State University, Department of Geosciences, Colorado.
  • McManus, J., Berelson, WM., Klinkhammer, GP., Hammond, DE., Holm, C. 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim. Cosmochim. Acta, 69: 95–108. Doi: 10.1016/j.gca.2004.06.023
  • Morford, JL., Russell, AD., Emerson, S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar. Geol., 174: 355-369. Doi: 10.1016/S0025-3227(00)00160-2
  • Morford, JL., Emerson, S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63(11-12): 1735-1750. Doi: 10.1016/S0016-7037(99)00126-X
  • Myers, KJ., Wignall, PB. 1987. Understanding Jurassic Organic-rich Mudrocks—New Concepts using Gamma-ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. Marine Clastic Sedimentology, 172-189.
  • Neumeister, S., Algeo TJ., Bechtel, A., Gawlick HJ., Gratzer, R., Sachsenhofer, RF. 2016. Redox conditions and depositional environment of the Lower Jurassic Bächental bituminous marls (Tyrol, Austria). Austrian Journal of Earth Sciences, 109(2): 142-156. Doi: 10.17738/ajes.2016.0010
  • Pailler, D., Bard, E., Rostek, F., Zheng, Y., Mortlock, R., van Geen, A. 2002. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochim. Cosmochim. Acta, 66: 849 – 865. Doi: 10.1016/S0016-7037(01)00817-1
  • Passier, HF., De Lange, GJ. 1998. Sedimentary sulfur and iron chemistry in relation to the formation of Eastern Mediterranean sapropels. A.H.F Robertson, K.C. Emeis, C. Richter, A. Camerlenghi [eds.], Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), pp. 249–259.
  • Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X., Riboulleau, A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233: 137–155. Doi: 10.1016/j.chemgeo.2006.02.021
  • Rivas-Sanchez, ML., Alva-Valdivia, LM. Arenas-Alatorre, J., Urrutia-Fucugauchi, M., Ruiz-Sandoval, M., Ramos-Molina, MA. 2006. Berthierine and chamosite hydrothermal: genetic guides in the Pena Colorada magnetite-bearing ore deposit, Mexico. Earth Planets Space, 58: 1389–1400. Doi: 10.1186/BF03352635
  • Sageman, BB., Murphy, AE., Werne, JP., Ver Straeten, CA., Hollander, DJ., Lyons, TW. 2003. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195(1-4), 229-273. Doi: 10.1016/S0009-2541(02)00397-2
  • Sarı, A., Arslan, Ö. 2019. Redoksa Duyarlı Elementlerin İndirgen Ortamlardaki Jeokimyasal Davranışlarına Türkiye’den Bir Örnek: Bozcahöyük (Seyitömer/Kütahya) Sahası Bitümlü Kayaçlar. Mühendislik ve Yer Bilimleri Dergisi, 4(2): 14-39.
  • Sarı, A., Döner, Z., Koca, D., Aliyev, SA. 2016. Source rock characteristics of Eocene bituminous shales and the effect of redox conditions on source rock potential, Nallıhan (Ankara) Central Anatolian Basin. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(2): 227–235. Doi: 10.1080/15567036.2012.669811
  • Sarı, A., Ismayılzada, K., Pehlivanlı, BY., Erol, F. 2023. The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. General Topics in Geology and Earth Sciences 1. Chapter II. pp. 23-40.
  • Sarı, A., Koca, D. 2012. Jura - Kretase yaşlı Akkuyu Formasyonunun (Orta Toroslar/ Türkiye) provenans, tektonik ve redoks koşullarına bir yaklaşım. MTA Dergisi, 144: 51-73.
  • Sarı, A., Pehlivanlı BY., Koca, D., Koç, Ş. 2010. During Triassic Paleoredoks and Provenance Investigation of Rich Organic Matter Tarasçı Formation (Middle Taurus / Turkey). Electronic Letters on Science & Engineering, 6(1), 9-24.
  • Scott C., Lyons TW., Bekker A., Shen Y., Poulton SW., Chu X., Anbar, AD. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459. Doi: 10.1038/nature06811
  • Scott, C., Lyons, TW. 2012. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 324-325: 19-27. Doi: 10.1016/j.chemgeo.2012.05.012
  • Teng, GE., Hui, LW., Xu, YC., Chen, JF. 2005. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment. Adv Earth Sci., 20(2): 193-200. Doi: 10.11867/j.issn.1001-8166.2005.02.0193
  • Tribovillard N., Algeo TJ., Lyons T., Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12-32. Doi: 10.1016/j.chemgeo.2006.02.012
  • Tyson, RV. 1995. Sedimentary Organic Matter. Chapman & Hall, London. 615 pp.
  • Tyson, RV., Pearson, TH. 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society of London Special Publication, 58: 1-24. Doi: 10.1144/GSL.SP.1991.058.01.01
  • Van Cappellen, P., Ingall, ED. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography and Paleoclimatology, 9(5): 677-692. Doi: 10.1029/94PA01455
  • Vosoughi Moradi, A., Sarı, A. Akkaya, A. 2016. Paleoredox reconstruction of bituminous shales from the Miocene Hançili Formation, Çankırı-Çorum Basin, Turkey: Evaluating the role of anoxia in accumulation of organic-rich shales. Marine and Petroleum Geology, 78: 136-150. Doi: 10.1016/j.marpetgeo.2016.09.012
  • Wignall, PB. 1994. Black Shales. Clarendon Press, Oxford. 127 pp.
  • Wignall, PB., Twitchett, RJ. 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, New Series, 272(5265): 1155-1158. Doi: 10.1126/science.272.5265.1155
  • Yarincik, KM., Murray, RW., Lyons, TW., Peterson, LC., Haug, GH. 2000. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography and Paleoclimatology, 15: 593 – 604. Doi: 10.1029/1999PA000401

Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki

Yıl 2024, Cilt: 14 Sayı: 2, 61 - 84, 23.07.2024

Öz

Bu çalışmada, Ilgın (Konya) havzasında yüzlek veren organik maddece çok zengin (%TOC:14.52-44.44; ort:31.24) Miyosen yaşlı bitümlü kiltaşlarındaki redoksa duyarlı iz elementlerin: Vanadyum (V), Uranyum (U) ve Molibden (Mo), Çinko (Zn), Nikel (Ni), Bakır (Cu) ve Kobalt (Co) jeokimyasal davranışlarının incelenmesi ve havzanın redoks koşulunun organik madde birikimindeki etkisinin ortaya konulması amaçlanmıştır. Bu amaçla, tabandaki linyitli seviyesinden başlayarak tavana kadar sistematik olarak bitümlü kiltaşlarından 14 adet örnekleme yapılmıştır. Ilgın sahasındaki Miyosen yaşlı bitümlü kiltaşlarında redoksa duyarlı element davranışlarının incelenmesinde ana ve iz elementler ile bunların toplam organik madde (%TOC) ile olan ilişkileri incelenmiştir. Örneklerde ana ve iz element analizleri ICP-OES cihazında ve %TOC analizleri de Rock Eval VI cihazında yapılmıştır. İncelenen bitümlü kayaçlarda %TOC ile %Mo’nin (r=0.529) orta derecede; Cu (r= -0.230), Ni (r= -0.030), Zn (r= 0.216), U (r=0.083), V (r=0.124) ve Co’ın (r=0.076) çok zayıf ve zayıf korelasyonları bulunmaktadır. Bu durum, Mo dışındaki diğer elementlerin su kütlesinden sapropele difüzyonunda ve tortullarda zenginleşmelerinde hümik asitlerdeki organometalik ligandların etkisinin olmadığını gösterir. Fe’in U (r= 0.204), Ni (r= 0.029) ve Zn ile (r= -0.142) olan çok zayıf korelasyon ilişkileri, U ve Zn’nun sapropelde zenginleşmelerinde piritin etkisinin olmadığını gösterir. Ancak, Fe’in Co ile (r= 0.535) orta ve Mo ile de (r= 0.722) güçlü korelasyon ilişkisi Co ve Mo’nin sapropelde zenginleşmesinde piritin etkili olduğunu gösterir. Örneklerde, Mn ile Cu (r= -0.562), Zn (r= -0.163), Ni (r= -0.318), V (r= -0.243), U (r= -0.142) ve Mo (r= -0.600) arasındaki çok zayıf korelasyon ilişkisi bu elementlerin su kütlesinden Mn oksi-hidroksitler ile sapropele difüzyonunda ve zenginleşmelerinde Mn oksi-hidroksitlerin hiçbir rol oynamadığını göstermektedir. Kükürt’ün Ni (r= -0.121), V (r= -0.177) ve Zn (r= -0.354) ile çok zayıf; Cu (r= 0.290) ve U (r=0.302) ile zayıf; Co (r=0.476) ile orta ve Mo ile de (r=0.729) kuvvetli korelasyon ilişkisi vardır. Bu durum, Co’ın CoS şeklinde, Mo’nin ise MoS2 şeklinde çökeldiğini; Cu, Zn, Ni, U ve V elementlerinin ise sülfid şeklinde bir zenginleşmelerinin olamadığını göstermektedir. Örneklerde, Fe ve S arasındaki çok güçlü (r=0.929) korelasyon ilişki Fe’nin pirit (FeS2) fazında çökeldiğini ve redoks koşulunun da anoksik olduğunu gösterir. Havzadaki redoks şartları; Th/U oranlarına göre tüm örneklerde; U/Th oranlarına göre RE-1 ve RE-7 numaralı örnekler dışında; V/V+Ni oranlarına görede RE-1,2,3,6 ve 12 numaralı örnekler dışında disoksik/suboksik ve anaoksiktir.

Teşekkür

Yazarlar, bu makaleyi eğitim-öğretimindeki 90. yıl münasebetiyle (1934-2024) Ankara Üniversitesi Jeoloji Mühendisliği Bölümü’ne (Ankara Jeoloji) ithaf ederler. Bu çalışmada incelenen örneklerde ana ve iz element analizleri A.Ü. YEBİM Araştırma Merkezinde ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) model cihaz kullanılarak yapılmış olup kendilerine teşekkür ederiz.

Kaynakça

  • Adams, JAS., Weaver, CE. 1958. Thorium to uranium ratios as indications of sedimentary processes: Example of concept of geochemical facies. American Association of Petroleum Geologists Bulletin, 42: 387-430. Doi: 10.1306/0BDA5A89-16BD-11D7-8645000102C1865D
  • Algeo, TJ., Maynard, JB. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. Doi: 0.1016/j.chemgeo.2003.12.009
  • Algeo, TJ., Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18. Doi: 10.1016/j.chemgeo.2011.09.002
  • Berryman, RR. 2008. Constraints on development of anoxia through geochemical facies mapping of Devonian black shales in the Midcontinent: Master of Science Thesis, Oklahoma State University.
  • Brumsack, HJ. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344–361. Doi: 10.1016/j.palaeo.2005.05.011
  • Calvert, SE., Pedersen, TF. 1993. Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol., 113: 67 – 88. Doi: 10.1016/0025-3227(93)90150-T
  • Canfield, DE. 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114: 315 – 329. Doi: 10.1016/0009-2541(94)90061-2
  • Cruse, A., Lyons, T. 2004. Trace metal record of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chem.Geol., 206: 319-345. Doi: 10.1016/j.chemgeo.2003.12.010
  • Crusius, J., Calvert, S., Pedersen, T., Sage, D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett., 145: 65-78. Doi: 10.1016/S0012-821X(96)00204-X
  • Dean, WE., Gardner, JV., Piper, DZ. 1997. Inorganic geochemical indicators of glacial –interglacial changes in productivity and anoxia of the California continental margin. Geochim. Cosmochim. Acta, 61: 4507 – 4518. Doi: 10.1016/S0016-7037(97)00237-8
  • Dean, WE., Piper, DZ., Peterson, LC. 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: a record of water-column anoxia and climate. Geology, 27: 507-510. Doi: 10.1130/0091-7613(1999)027<0507:MAICBS>2.3.CO;2
  • Deng, HW., Qian, K. 1993. Analysis on sedimentary geochemistry and environment, Science Technology Press, Gansu: 15–85 (in Chinese).
  • Ekwunife, IC. 2017. Assessing MudrocK characteristics, high-resolution chemostratigraphy, and sequence stratigraphy of the Woodford Shale in the Mcalister Cemetery Quarry, Ardmore Basin, Oklahoma. Master of Science Thesis, University of Oklahoma.
  • Engin, H. 2013. Kürnüç (Göynük/Bolu) bitümlü şeyllerinin redoksa duyarlı iz element incelemeleri, Ankara Üniversitesi Fen bilimleri Enstitüsü Yüksek Lisans Tezi. 147 s. Yayımlanmamış.
  • Ernst, TW. 1970. Geochemical facies analysis, Elsevier, Amsterdam, 152 p.
  • Hatch, JR., Leventhal, JS. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol., 99: 65–82. Doi: 10.1016/0009-2541(92)90031-Y
  • Huerta-Diaz, MA., Morse, JW. 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56: 2681-2702. Doi: 10.1016/0016-7037(92)90353-K
  • Hüseyinca, MY., Eren, Y. 2007. Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. S.Ü. Müh.-Mim. Fak. Derg., 23: 1-2.
  • Jones, B., Manning, DAC. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 111: 111–129. Doi: 10.1016/0009-2541(94)90085-X
  • Karayiğit, AI., Akgün, F., Gayer, RA., Temel, A. 1999. Quality, Palynology, And Paleoenvironmental Interpretion of The Ilgın Lignite, Turkey. International Journal of Coal Geology, 38: 219‐236. Doi: 10.1016/S0166-5162(98)00015-9
  • Koralay, DB., Sarı, A. 2013. Redox Conditions and Metal-Organic Carbon Relations of Eocene Bituminous Shales (Veliler/Mengen-Bolu/Turkey). Energy Sources, Part A, 35(17), 1597-1607. Doi: 10.1080/15567036.2011.551917
  • Marolf, NJ. 2014. Redox sensitive trace elements document chemical depositional environment and post-depositional oxidation of the Ediacaran Biri Formation, southern Norway. Master of Science Thesis, Colorado State University, Department of Geosciences, Colorado.
  • McManus, J., Berelson, WM., Klinkhammer, GP., Hammond, DE., Holm, C. 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim. Cosmochim. Acta, 69: 95–108. Doi: 10.1016/j.gca.2004.06.023
  • Morford, JL., Russell, AD., Emerson, S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar. Geol., 174: 355-369. Doi: 10.1016/S0025-3227(00)00160-2
  • Morford, JL., Emerson, S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63(11-12): 1735-1750. Doi: 10.1016/S0016-7037(99)00126-X
  • Myers, KJ., Wignall, PB. 1987. Understanding Jurassic Organic-rich Mudrocks—New Concepts using Gamma-ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. Marine Clastic Sedimentology, 172-189.
  • Neumeister, S., Algeo TJ., Bechtel, A., Gawlick HJ., Gratzer, R., Sachsenhofer, RF. 2016. Redox conditions and depositional environment of the Lower Jurassic Bächental bituminous marls (Tyrol, Austria). Austrian Journal of Earth Sciences, 109(2): 142-156. Doi: 10.17738/ajes.2016.0010
  • Pailler, D., Bard, E., Rostek, F., Zheng, Y., Mortlock, R., van Geen, A. 2002. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochim. Cosmochim. Acta, 66: 849 – 865. Doi: 10.1016/S0016-7037(01)00817-1
  • Passier, HF., De Lange, GJ. 1998. Sedimentary sulfur and iron chemistry in relation to the formation of Eastern Mediterranean sapropels. A.H.F Robertson, K.C. Emeis, C. Richter, A. Camerlenghi [eds.], Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), pp. 249–259.
  • Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X., Riboulleau, A. 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233: 137–155. Doi: 10.1016/j.chemgeo.2006.02.021
  • Rivas-Sanchez, ML., Alva-Valdivia, LM. Arenas-Alatorre, J., Urrutia-Fucugauchi, M., Ruiz-Sandoval, M., Ramos-Molina, MA. 2006. Berthierine and chamosite hydrothermal: genetic guides in the Pena Colorada magnetite-bearing ore deposit, Mexico. Earth Planets Space, 58: 1389–1400. Doi: 10.1186/BF03352635
  • Sageman, BB., Murphy, AE., Werne, JP., Ver Straeten, CA., Hollander, DJ., Lyons, TW. 2003. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195(1-4), 229-273. Doi: 10.1016/S0009-2541(02)00397-2
  • Sarı, A., Arslan, Ö. 2019. Redoksa Duyarlı Elementlerin İndirgen Ortamlardaki Jeokimyasal Davranışlarına Türkiye’den Bir Örnek: Bozcahöyük (Seyitömer/Kütahya) Sahası Bitümlü Kayaçlar. Mühendislik ve Yer Bilimleri Dergisi, 4(2): 14-39.
  • Sarı, A., Döner, Z., Koca, D., Aliyev, SA. 2016. Source rock characteristics of Eocene bituminous shales and the effect of redox conditions on source rock potential, Nallıhan (Ankara) Central Anatolian Basin. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 38(2): 227–235. Doi: 10.1080/15567036.2012.669811
  • Sarı, A., Ismayılzada, K., Pehlivanlı, BY., Erol, F. 2023. The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field. General Topics in Geology and Earth Sciences 1. Chapter II. pp. 23-40.
  • Sarı, A., Koca, D. 2012. Jura - Kretase yaşlı Akkuyu Formasyonunun (Orta Toroslar/ Türkiye) provenans, tektonik ve redoks koşullarına bir yaklaşım. MTA Dergisi, 144: 51-73.
  • Sarı, A., Pehlivanlı BY., Koca, D., Koç, Ş. 2010. During Triassic Paleoredoks and Provenance Investigation of Rich Organic Matter Tarasçı Formation (Middle Taurus / Turkey). Electronic Letters on Science & Engineering, 6(1), 9-24.
  • Scott C., Lyons TW., Bekker A., Shen Y., Poulton SW., Chu X., Anbar, AD. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456–459. Doi: 10.1038/nature06811
  • Scott, C., Lyons, TW. 2012. Contrasting Molybdenum Cycling and Isotopic Properties in Euxinic versus Non-Euxinic Sediments and Sedimentary Rocks: Refining the Paleoproxies. Chemical Geology, 324-325: 19-27. Doi: 10.1016/j.chemgeo.2012.05.012
  • Teng, GE., Hui, LW., Xu, YC., Chen, JF. 2005. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment. Adv Earth Sci., 20(2): 193-200. Doi: 10.11867/j.issn.1001-8166.2005.02.0193
  • Tribovillard N., Algeo TJ., Lyons T., Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12-32. Doi: 10.1016/j.chemgeo.2006.02.012
  • Tyson, RV. 1995. Sedimentary Organic Matter. Chapman & Hall, London. 615 pp.
  • Tyson, RV., Pearson, TH. 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society of London Special Publication, 58: 1-24. Doi: 10.1144/GSL.SP.1991.058.01.01
  • Van Cappellen, P., Ingall, ED. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography and Paleoclimatology, 9(5): 677-692. Doi: 10.1029/94PA01455
  • Vosoughi Moradi, A., Sarı, A. Akkaya, A. 2016. Paleoredox reconstruction of bituminous shales from the Miocene Hançili Formation, Çankırı-Çorum Basin, Turkey: Evaluating the role of anoxia in accumulation of organic-rich shales. Marine and Petroleum Geology, 78: 136-150. Doi: 10.1016/j.marpetgeo.2016.09.012
  • Wignall, PB. 1994. Black Shales. Clarendon Press, Oxford. 127 pp.
  • Wignall, PB., Twitchett, RJ. 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, New Series, 272(5265): 1155-1158. Doi: 10.1126/science.272.5265.1155
  • Yarincik, KM., Murray, RW., Lyons, TW., Peterson, LC., Haug, GH. 2000. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography and Paleoclimatology, 15: 593 – 604. Doi: 10.1029/1999PA000401
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Yatakları ve Jeokimya
Bölüm Research Article
Yazarlar

Ali Sarı 0000-0001-6289-3332

Kamal Ismayılzada 0000-0002-0960-0286

Sinan Akıska 0000-0001-8262-7349

Fuat Erol 0009-0008-5830-3860

Yayımlanma Tarihi 23 Temmuz 2024
Gönderilme Tarihi 6 Şubat 2024
Kabul Tarihi 27 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Sarı, A., Ismayılzada, K., Akıska, S., Erol, F. (2024). Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen Ve Mühendislik Dergisi, 14(2), 61-84. https://doi.org/10.7212/karaelmasfen.1432525
AMA Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi. Temmuz 2024;14(2):61-84. doi:10.7212/karaelmasfen.1432525
Chicago Sarı, Ali, Kamal Ismayılzada, Sinan Akıska, ve Fuat Erol. “Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları Ve Redoks Koşulları Arasındaki İlişki”. Karaelmas Fen Ve Mühendislik Dergisi 14, sy. 2 (Temmuz 2024): 61-84. https://doi.org/10.7212/karaelmasfen.1432525.
EndNote Sarı A, Ismayılzada K, Akıska S, Erol F (01 Temmuz 2024) Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi 14 2 61–84.
IEEE A. Sarı, K. Ismayılzada, S. Akıska, ve F. Erol, “Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki”, Karaelmas Fen ve Mühendislik Dergisi, c. 14, sy. 2, ss. 61–84, 2024, doi: 10.7212/karaelmasfen.1432525.
ISNAD Sarı, Ali vd. “Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları Ve Redoks Koşulları Arasındaki İlişki”. Karaelmas Fen ve Mühendislik Dergisi 14/2 (Temmuz 2024), 61-84. https://doi.org/10.7212/karaelmasfen.1432525.
JAMA Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:61–84.
MLA Sarı, Ali vd. “Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları Ve Redoks Koşulları Arasındaki İlişki”. Karaelmas Fen Ve Mühendislik Dergisi, c. 14, sy. 2, 2024, ss. 61-84, doi:10.7212/karaelmasfen.1432525.
Vancouver Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın (Konya) Havzası Miyosen Yaşlı Bitümlü Kiltaşlarındaki Redoksa Duyarlı Element Davranışları ve Redoks Koşulları Arasındaki İlişki. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(2):61-84.