Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Esnek Ditiya-alkil Köprülü Homo-dimerik Metalsiz ve Metalli ftalosyaninler

Yıl 2017, Sayı: 1, 31 - 35, 31.12.2017

Öz

Bu çalışmada,  homo dimerik metal içermeyen ve
metaloftalosiyaninlerin organik çözücülerde spektroskopik özelliklerinin
sentezi, karakterizasyonu ve araştırılması gerçekleştirilmiştir.
Ftalosiyaninlerin sentezi için başlangıç ​​bileşiği olarak seçilmiş diftalonitril
türevi, 4-nitroftalonitril ve bileşik l'in kuru dimetilformamid / potasyum
karbonat içinde reaksiyonu ile hazırlandı. 1:6.15 oranında ftalonitril ile
substitue diftalonitrilin siklotetramerasizasyonu, beklenen homo-dimerik metal
içermeyen ftalosiyanini ve Zn(II), Ni(II), Co(II) ve Cu(II) metal tuzları ile
tetramerizasyonu da, binükleer
Zn-, Ni-, Co- and Cu- ftalosyaninleri oluşturdu. Tüm bu reaksiyonlar,
DMAE/1,8-diazabicyclo [5.4.0] undec-7-ene sisteminde gerçekleştirildi.
Ürünler, kristallendirme ve silika jel kolon
kromatografisi ile saflaştırıldı. Yeni hazırlanan bileşikler,  IR, 1H / 13C-NMR, MS ve
UV-Vis spektroskopisinin kombinasyonu ile karakterize edildi. Ayrıca, tüm yeni
ftalosiyaninlerin agregasyon davranışları da araştırılmıştır. Metal içermeyen
metalli-ftalosiyaninlerin agregasyon özellikleri kloroformda araştırılmıştır.
Dimerik metal içermeyen metalli-ftalosiyaninler kloroformda 4x10-6-16x10-6
mol/L konsantrasyon aralığında agregasyon göstermemiştir. Ayrıca kloroform, N,N-dimetil
formamid, dimetilsülfoksit, piridin ve tetrahidrofuranda Co-ftalosiyanin
molekülünün agregasyon özellikleri araştırılmıştır. Co-ftalosiyanin molekülü,
1x10-5 mol/L konsantrasyonda belirtilen çözücülerde monomerik
davranış göstermiştir.

Kaynakça

  • 1. Sumimoto, M., Yokogawa, D., Kawashima, Y., Hori, K., Fujimoto, H., Theoretical and experimental study on the excited states of the X-, α- and β-forms of lithium phthalocyanine, Spectrochim. Acta A. 2012, 91, 118–125. 2. Cook, M. J., Liquid-crystalline oligomeric and polymeric phthalocya-nines, Adv. Mater. 1995, 7, 877-880. 3. Sadaoka, Y., Jones, T. A., Gopel, W., Deterioration phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na2O–Al2O3–4SiO2// YSZ/Pt structure, Sensors Actuat. B-Chem. 1990, 1, 148-153. 4. Jiang, J., Kasuga, K., Arnold, D. P., Nalwa, H. S., Supramolecular Photosensitive and Electroactive Materials. Academic Press: San Diego, 2001, 188. 5. Koca, A., Sener, M. K., Koçak, M. B., Gül, A., Investigation of the electrocatalytic activity of metalophthalocyanine complexes for hydrogen production from water, Int. J. Hydrogen Energ. 2001, 31, 2211-2216. 6. Aga, H., Aramata, A., Hisaeda, Y., The electroreduction of carbon dioxide by macrocyclic cobalt complexes chemically modified on a glassy carbon electrode, J. Electroanal. Chem. 1997, 437, 111-118. 7. Zagal, J. H., Metallophthalocyanines as catalysts in electrochemical reactions, Coord. Chem. Rev. 1992, 119, 89-136. 8. McKeown, N. B., Phthalocyanine Materials–Synthesis, Structure and Functions, Cambridge University Press, Cambridge, 1998. 9. Ray, A., Chattopadhyay, S., Bhattacharya, S., Photophysical and theoretical insights on non-covalently linked fullerene-zinc phthalocyanine complexes, Spectrochim. Acta A. 2011, 79, 1435–1442. 10. Gregory, P., Industrial applications of phthalocyanines, J. Porphyr. Phthalocya. 2000, 4, 432–437. 11. Zhang, J., Tse, Y. H., Pietro, W. J., Lever, A. B. P., Electrocatalytic activity of N,N',N'',N'''-tetramethyl-tetra-3,4-pyridoporphyrazinocobalt (II) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine, J. Electroanal. Chem. 1996, 406, 203-211. 12. Merey, S., Bekaroglu, Ö., Synthesis and characterization of novel phthalocyanines with four tridentate NNS substituents and four chloro groups, J. Chem. Soc. Dalton. 1999, 24, 4503-4510. 13. Kadish, K. M., Nakanishi, T., Gürek, A., Ahsen, V., Yılmaz, İ., Nakanishi, T., Electrochemistry of a double-decker lutetium(III) phthalocyanine in aqueous media. The first evidence for five reductions, J. Phys. Chem. B. 2001, 105, 9817-9821. 14. Koike, N., Uekusa, H., Ohashi, Y., Harnoode, C., Kitamura, F., Ohsaka, T., Tokuda, K., Relationship between the skew angle and interplanar distance in four bis(phthalocyaninato)lanthanide(III) tetra-butylammonium salts ([NBu(4)(n)][Ln(III)Pc(2)]; Ln=Nd,Gd,Ho,Lu), Inorg. Chem. 1996, 35, 5798-5804. 15. Jin, S., Cheng, G., Chen, G. Z., Ji, Z., Tuning the maximum absorption wavelengths of phthalocyanine derivatives, J. Porphyr. Phthalocya. 2005, 9, 32–39. 16. Rodriguez-Morgade, M. S., De la Torre, G., Torres, T., The Porphyrin Handbook, eds. Kadish, K. M., Smith, K. M., Guilard, R. Academic Press, San Diego, 2003, 15, 125. 17. Değirmencioğlu, İ., Bayrak, R., Er, M., Serbest, K., New olefinic centred binuclear clamshell type phthalocyanines: design, synthesis, structural characterisation, the stability and the change in the electron cloud at olefine-based symmetrical diphthalonitrile fragment by the combined application of UV–Vis electronic structure and theoretical methods, Polyhedron 2011, 30, 1628-1636. 18. Vior, M. C. G., Dicelio, L. E., Awruch, J., Synthesis and properties of phthalocyanine zinc(II) complexes replaced with oxygen and sulfur linked adamantane moieties, Dyes Pigments 2009, 83, 375–380. 19. Perin D. D., Armarego W. L. F., Purification of Laboratory Chemicals, Pergamon, Oxford, 1989. 20. Patra, A., Sarkar, S., Chakraborty, R., Drew, M. G. B., Chattopadhyay, P., Coordination behavior of symmetrical hexadentate O2N2S2-donor Schiff bases toward zinc (II): synthesis, characterization, and crystal structure, J. Coord. Chem. 2010, 63, 1913-1920. 21. Young, G. J., Onyebuagu, W., Synthesis and characterization of di-disubstituted phthalocyanines, J. Org. Chem. 1990, 55, 2155-2159. 22. Cong, F., Li, J., Ma, C., Gao, J., Duan, W., Du, X., Tuning J-type dimers of non-peripherally substituted zinc tetra-4-tert-butylpheno-phthalocyanine, Spectrochim. Acta A. 2008, 71, 1397–1401. 23. Öztürk, C., Erdoğmuş¸ A., Durmuş¸ M., Uğur, A. L., Kılıçarslan, F. A., Erden, İ., Highly soluble 3,4-(dimethoxyphenylthio) substituted phthalocyanines: Synthesis, photophysical and photochemical studies, Spectrochim. Acta A. 2012, 86, 423–431. 24. Bayrak, R., Akçay, H. T., Durmuş, M., Değirmencioğlu, İ., Synthesis, photophysical and photochemical properties of highly soluble phthalocyanines substituted with four 3,5-dimethylpyrazole-1-methoxy groups, J. Organomet. Chem. 2011, 696, 3807-3815. 25. Yabaş, E., Sülü, M., Saydam, S., Dumludağ, F., Salih, B., Bekaroğlu, Ö., Synthesis, characterization and investigation of electrical and electrochemical properties of imidazole substituted phthalocyanines, Inorgan. Chim. Acta. 2011, 365, 340–348. 26. Değirmencioğlu, İ., Bayrak, R., Er, M., Serbest, K., The microwave-assisted synthesis and structural characterization of novel, dithia-bridged polymeric phthalocyanines containing a substituted thiophenylamine Schiff base, Dyes Pigments 2009, 83, 51-58. 27. Kantekin, H., Dilber, G., Nas, A., Microwave-assisted synthesis and characterization of a new soluble metal-free and metallophthalo-cyanines peripherally fused to four 18-membered tetrathiadiaza macrocycles, J. Organomet. Chem. 2010, 695, 1210–1214. 28. Dubinina, T. V., Trashin, S. A., Borisova, N. E., Boginskaya, I. A., Tomilova, L. G., Zefirov, N. S., Phenyl-substituted planar binuclear phthalo- and naphthalocyanines: synthesis and investigation of physicochemical properties, Dyes Pigments 2012, 93, 1471-1480. 29. Dubinina, T. V., Ivanov, A. V., Borisova, N. E., Trashin, S. A., Gurskiy, S. I., Tomilova, L. G., Zefirov, N. S., Synthesis and investigation of spectral and electrochemical properties of alkyl-substituted planar binuclear phthalocyanine complexes sharing a common naphthalene ring, Inorg. Chim. Acta. 2010, 363, 1869–1878. 30. Yarasir, M. N., Kandaz, M., Güney, O., Salih, B., Synthesis and photophysical properties of metallophthalocyanines substituted with a benzofuran based fluoroprobe, Spectrochim. Acta A. 2012, 93, 379-383. 31. Schimid, G., Sommerauer, M., Geyer, M., Hanack, M., Phyhalocyanines properties and applications, Eds: Leznoff, C. C. and Lever, A. B. P. VCH Publishers, Inc., New York, 1996, 4, 1-18. 32. De la Torre, G., Claessens, C. G., Torres, T., Phthalocyanines: The need for selective synthetic approaches, Eur. J. Org. Chem. 2000, 32, 2821-2830. 33. Bakboord, J. V., Cook, M. J., Hamuryudan, E., Non-uniformly substituted phthalocyanines and related compounds: alkylated tribenzo-imidazolo[4,5) porphyrazines, J. Porphyr. Phthalocya. 2000, 4, 510-517. 34. Arslanoğlu, Y., Koca, A., Hamuryudan, E., Synthesis of novel unsymmetrical phthalocyanines substituted with crown ether and nitro groups, Polyhedron 2007, 26, 891-896. 35. Kulaç¸ D., Bulut, M., Altındal, A., Özkaya, A. R., Salih, B. and Bekaroğlu, Ö., Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III)

Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines

Yıl 2017, Sayı: 1, 31 - 35, 31.12.2017

Öz

In
this study, synthesis, characterization and investigation of spectroscopic
properties in organic solvents of homo dimeric metal free and
metallophthalocyanines have been carried out. The substituted di-phthalonitrile
derivative as a starting material for the synthesis of phthalocyanines was
prepared by the reaction of 4-nitrophthalonitrile and compound 1 in dry dimethylformamide/potassium
carbonate. The cyclotetramerization of substituted diphthalonitrile derivative with phthalonitrile in 1:6.15 ratio
gave the expected homo-dimeric metal-free phthalocyanine and with metal salts
of Zn(II), Ni(II), Co(II) and Cu(II) gave binuclear Zn-, Ni-, Co- and
Cu-phthalocyanines, respectively, in
dimethyl aminoethanol/1,8-diazabicyclo [5.4.0] undec-7-ene system. The
products were purified by crystallization and silica gel column chromatography.
The newly prepared compounds were characterized by a combination of IR, 1H
/ 13C-NMR, MS and UV-Vis spectroscopy. In addition, aggregation
behaviors of all novel phthalocyanines were investigated. Aggregation properties
of the metal free and metallophthalocyanines have been investigated in
chloroform. Dimeric metal free and metallophthalocyanines did not show
aggregation in chloroform at 4x10-6–16x10-6 mol/L concentration
range. Furthermore, aggregation properties of Co- phthalocyanine have been investigated
in chloroform, N,N–dimethyl formamide, dimethylsulfoxide, pyridine and
tetrahydrofurane. Co-phthalocyanine complex showed monomeric behavior in
mentioned solvents at 1x10-5 mol/L concentration.

Kaynakça

  • 1. Sumimoto, M., Yokogawa, D., Kawashima, Y., Hori, K., Fujimoto, H., Theoretical and experimental study on the excited states of the X-, α- and β-forms of lithium phthalocyanine, Spectrochim. Acta A. 2012, 91, 118–125. 2. Cook, M. J., Liquid-crystalline oligomeric and polymeric phthalocya-nines, Adv. Mater. 1995, 7, 877-880. 3. Sadaoka, Y., Jones, T. A., Gopel, W., Deterioration phenomena of electrochemical CO2 sensor with Pt, Na2CO3/Na2O–Al2O3–4SiO2// YSZ/Pt structure, Sensors Actuat. B-Chem. 1990, 1, 148-153. 4. Jiang, J., Kasuga, K., Arnold, D. P., Nalwa, H. S., Supramolecular Photosensitive and Electroactive Materials. Academic Press: San Diego, 2001, 188. 5. Koca, A., Sener, M. K., Koçak, M. B., Gül, A., Investigation of the electrocatalytic activity of metalophthalocyanine complexes for hydrogen production from water, Int. J. Hydrogen Energ. 2001, 31, 2211-2216. 6. Aga, H., Aramata, A., Hisaeda, Y., The electroreduction of carbon dioxide by macrocyclic cobalt complexes chemically modified on a glassy carbon electrode, J. Electroanal. Chem. 1997, 437, 111-118. 7. Zagal, J. H., Metallophthalocyanines as catalysts in electrochemical reactions, Coord. Chem. Rev. 1992, 119, 89-136. 8. McKeown, N. B., Phthalocyanine Materials–Synthesis, Structure and Functions, Cambridge University Press, Cambridge, 1998. 9. Ray, A., Chattopadhyay, S., Bhattacharya, S., Photophysical and theoretical insights on non-covalently linked fullerene-zinc phthalocyanine complexes, Spectrochim. Acta A. 2011, 79, 1435–1442. 10. Gregory, P., Industrial applications of phthalocyanines, J. Porphyr. Phthalocya. 2000, 4, 432–437. 11. Zhang, J., Tse, Y. H., Pietro, W. J., Lever, A. B. P., Electrocatalytic activity of N,N',N'',N'''-tetramethyl-tetra-3,4-pyridoporphyrazinocobalt (II) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine, J. Electroanal. Chem. 1996, 406, 203-211. 12. Merey, S., Bekaroglu, Ö., Synthesis and characterization of novel phthalocyanines with four tridentate NNS substituents and four chloro groups, J. Chem. Soc. Dalton. 1999, 24, 4503-4510. 13. Kadish, K. M., Nakanishi, T., Gürek, A., Ahsen, V., Yılmaz, İ., Nakanishi, T., Electrochemistry of a double-decker lutetium(III) phthalocyanine in aqueous media. The first evidence for five reductions, J. Phys. Chem. B. 2001, 105, 9817-9821. 14. Koike, N., Uekusa, H., Ohashi, Y., Harnoode, C., Kitamura, F., Ohsaka, T., Tokuda, K., Relationship between the skew angle and interplanar distance in four bis(phthalocyaninato)lanthanide(III) tetra-butylammonium salts ([NBu(4)(n)][Ln(III)Pc(2)]; Ln=Nd,Gd,Ho,Lu), Inorg. Chem. 1996, 35, 5798-5804. 15. Jin, S., Cheng, G., Chen, G. Z., Ji, Z., Tuning the maximum absorption wavelengths of phthalocyanine derivatives, J. Porphyr. Phthalocya. 2005, 9, 32–39. 16. Rodriguez-Morgade, M. S., De la Torre, G., Torres, T., The Porphyrin Handbook, eds. Kadish, K. M., Smith, K. M., Guilard, R. Academic Press, San Diego, 2003, 15, 125. 17. Değirmencioğlu, İ., Bayrak, R., Er, M., Serbest, K., New olefinic centred binuclear clamshell type phthalocyanines: design, synthesis, structural characterisation, the stability and the change in the electron cloud at olefine-based symmetrical diphthalonitrile fragment by the combined application of UV–Vis electronic structure and theoretical methods, Polyhedron 2011, 30, 1628-1636. 18. Vior, M. C. G., Dicelio, L. E., Awruch, J., Synthesis and properties of phthalocyanine zinc(II) complexes replaced with oxygen and sulfur linked adamantane moieties, Dyes Pigments 2009, 83, 375–380. 19. Perin D. D., Armarego W. L. F., Purification of Laboratory Chemicals, Pergamon, Oxford, 1989. 20. Patra, A., Sarkar, S., Chakraborty, R., Drew, M. G. B., Chattopadhyay, P., Coordination behavior of symmetrical hexadentate O2N2S2-donor Schiff bases toward zinc (II): synthesis, characterization, and crystal structure, J. Coord. Chem. 2010, 63, 1913-1920. 21. Young, G. J., Onyebuagu, W., Synthesis and characterization of di-disubstituted phthalocyanines, J. Org. Chem. 1990, 55, 2155-2159. 22. Cong, F., Li, J., Ma, C., Gao, J., Duan, W., Du, X., Tuning J-type dimers of non-peripherally substituted zinc tetra-4-tert-butylpheno-phthalocyanine, Spectrochim. Acta A. 2008, 71, 1397–1401. 23. Öztürk, C., Erdoğmuş¸ A., Durmuş¸ M., Uğur, A. L., Kılıçarslan, F. A., Erden, İ., Highly soluble 3,4-(dimethoxyphenylthio) substituted phthalocyanines: Synthesis, photophysical and photochemical studies, Spectrochim. Acta A. 2012, 86, 423–431. 24. Bayrak, R., Akçay, H. T., Durmuş, M., Değirmencioğlu, İ., Synthesis, photophysical and photochemical properties of highly soluble phthalocyanines substituted with four 3,5-dimethylpyrazole-1-methoxy groups, J. Organomet. Chem. 2011, 696, 3807-3815. 25. Yabaş, E., Sülü, M., Saydam, S., Dumludağ, F., Salih, B., Bekaroğlu, Ö., Synthesis, characterization and investigation of electrical and electrochemical properties of imidazole substituted phthalocyanines, Inorgan. Chim. Acta. 2011, 365, 340–348. 26. Değirmencioğlu, İ., Bayrak, R., Er, M., Serbest, K., The microwave-assisted synthesis and structural characterization of novel, dithia-bridged polymeric phthalocyanines containing a substituted thiophenylamine Schiff base, Dyes Pigments 2009, 83, 51-58. 27. Kantekin, H., Dilber, G., Nas, A., Microwave-assisted synthesis and characterization of a new soluble metal-free and metallophthalo-cyanines peripherally fused to four 18-membered tetrathiadiaza macrocycles, J. Organomet. Chem. 2010, 695, 1210–1214. 28. Dubinina, T. V., Trashin, S. A., Borisova, N. E., Boginskaya, I. A., Tomilova, L. G., Zefirov, N. S., Phenyl-substituted planar binuclear phthalo- and naphthalocyanines: synthesis and investigation of physicochemical properties, Dyes Pigments 2012, 93, 1471-1480. 29. Dubinina, T. V., Ivanov, A. V., Borisova, N. E., Trashin, S. A., Gurskiy, S. I., Tomilova, L. G., Zefirov, N. S., Synthesis and investigation of spectral and electrochemical properties of alkyl-substituted planar binuclear phthalocyanine complexes sharing a common naphthalene ring, Inorg. Chim. Acta. 2010, 363, 1869–1878. 30. Yarasir, M. N., Kandaz, M., Güney, O., Salih, B., Synthesis and photophysical properties of metallophthalocyanines substituted with a benzofuran based fluoroprobe, Spectrochim. Acta A. 2012, 93, 379-383. 31. Schimid, G., Sommerauer, M., Geyer, M., Hanack, M., Phyhalocyanines properties and applications, Eds: Leznoff, C. C. and Lever, A. B. P. VCH Publishers, Inc., New York, 1996, 4, 1-18. 32. De la Torre, G., Claessens, C. G., Torres, T., Phthalocyanines: The need for selective synthetic approaches, Eur. J. Org. Chem. 2000, 32, 2821-2830. 33. Bakboord, J. V., Cook, M. J., Hamuryudan, E., Non-uniformly substituted phthalocyanines and related compounds: alkylated tribenzo-imidazolo[4,5) porphyrazines, J. Porphyr. Phthalocya. 2000, 4, 510-517. 34. Arslanoğlu, Y., Koca, A., Hamuryudan, E., Synthesis of novel unsymmetrical phthalocyanines substituted with crown ether and nitro groups, Polyhedron 2007, 26, 891-896. 35. Kulaç¸ D., Bulut, M., Altındal, A., Özkaya, A. R., Salih, B. and Bekaroğlu, Ö., Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III)
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Rıza Bayrak

İsmail Değirmencioğlu

Yayımlanma Tarihi 31 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Sayı: 1

Kaynak Göster

APA Bayrak, R., & Değirmencioğlu, İ. (2017). Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines. Karadeniz Chemical Science and Technology(1), 31-35.
AMA Bayrak R, Değirmencioğlu İ. Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines. Karadeniz Chem. Sci. Tech. Aralık 2017;(1):31-35.
Chicago Bayrak, Rıza, ve İsmail Değirmencioğlu. “Novel Flexible Dithia-Alkyl Bridged Homo-Dimeric Metal-Free and Metallophthalocyanines”. Karadeniz Chemical Science and Technology, sy. 1 (Aralık 2017): 31-35.
EndNote Bayrak R, Değirmencioğlu İ (01 Aralık 2017) Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines. Karadeniz Chemical Science and Technology 1 31–35.
IEEE R. Bayrak ve İ. Değirmencioğlu, “Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines”, Karadeniz Chem. Sci. Tech., sy. 1, ss. 31–35, Aralık 2017.
ISNAD Bayrak, Rıza - Değirmencioğlu, İsmail. “Novel Flexible Dithia-Alkyl Bridged Homo-Dimeric Metal-Free and Metallophthalocyanines”. Karadeniz Chemical Science and Technology 1 (Aralık 2017), 31-35.
JAMA Bayrak R, Değirmencioğlu İ. Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines. Karadeniz Chem. Sci. Tech. 2017;:31–35.
MLA Bayrak, Rıza ve İsmail Değirmencioğlu. “Novel Flexible Dithia-Alkyl Bridged Homo-Dimeric Metal-Free and Metallophthalocyanines”. Karadeniz Chemical Science and Technology, sy. 1, 2017, ss. 31-35.
Vancouver Bayrak R, Değirmencioğlu İ. Novel Flexible Dithia-alkyl Bridged Homo-dimeric Metal-free and Metallophthalocyanines. Karadeniz Chem. Sci. Tech. 2017(1):31-5.