Derleme
BibTex RIS Kaynak Göster

Embriyonun Vasküler Gelişimi

Yıl 2016, Cilt: 19 Sayı: 2, 114 - 116, 01.08.2016

Öz









Dolaşım sistemi, kalp ve damarlardan oluşan gelişmiş bir
sistemdir. Ekstraembriyonik mezodermden köken alan dolaşım sistemi embriyoda
fonksiyona başlayan ilk sistemdir. Anjiyoblast formasyonu ve primitif plasental
dolaşım intrauterin üçüncü hafta başında başlar. Plastisite, belli yetişkin kök
hücrelerin farklı ve çeşitli hücre tiplerine dönebilmesidir. Hematopoietik kök
hücreler beyin, kalp kası, iskelet kası ve karaciğer hücrelerine, kemik iliği
stromal hücreleri kalp kası ve iskelet kası hücrelerine dönüşebilir. Arteriyel,
venöz ya da kapiller olarak damarların tanımlanması remodeling süreciyle
yakından ilişkilidir. Arterler Ephrin-B2 ve D114, venler Ephrin-B4 ve
neurophilin-2 gibi belirteçler tarafından tanımlanmıştır. Bu genlerin
kılavuzluğunda arter ve ven tanımlanması yapılabilir. Damar dallanması bu
genler dışında, hemodinami ve kardiyak out-put düzenlenmesi ile oluşan bir
fiziksel etkene ihtiyaç duymaktadır. Akım tarafından indüklenen plastisite,
damar oluşumu için genetik ve epigenetik faktörler arasında hayati bağdır.
Arteriyel venöz farklılaşma hemodinamik kuvvetler tarafından kontrol edilir.
Sonuç olarak akım, arteriyel ağacın şekillenmesinde önemli derecede etkilidir
ve arteriyel belirteçler olan Ephrin B2 ve Neuropilin 1’in aktivasyonunu regüle
eder.

Kaynakça

  • 1. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development demarcation of arterial venous doains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999;13:295-306.
  • 2. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y. Laminar shear stres inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf). Circ Res 2000;86:185-90.
  • 3. Bartling B, Tostlebe H, Darmer D, Holtz J, Silber RE, Morawietz H. Shear stres-dependent expression of apoptosis-regulating genes in endothelial cells. Biochem Biophys Res Commun 2000;278:740-6.
  • 4. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin- B2 and its receptor Eph-B4. Cell 1998;93:741-53.
  • 5. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, et al. Dossage-sensitive requirements of Mouse DII4 in artery development. Genes Dev 2004;18:2474-8.
  • 6. Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, et al. Haplo insufficiency of δ-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004;101:15949-54.
  • 7. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000;14:1313-8.
  • 8. Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G. Differential expression of neuropilin-2 in arteries and veins. Mech Dev 2001;109:115-9.
  • 9. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sunberg JP, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000;14:1343-52.
  • 10. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 2001;128:3359-70.
  • 11. Rouwet EV, Tintu AN, Schellings MW, van Bilsen M, Lutgens E, Hofstra L, et al. Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 2002;105:2791-6.
  • 12. Ruijtenbeek K, le Noble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, et al. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 2000;102:2892-7.
  • 13. Ie Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijensen R, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 2004;131:361-75.
  • 14. Ie Noble, Fleury V, Pries A, Corvol P, Eichman A, Reneman RS. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovascular Res 2005;65:619-28.
  • 15. Nguyen TH, Eichmann A, Le Noble F, Fleury V. Dynamics of vascular branching morphogenesis: the effect of blood and tissue flow. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73:061907.
  • 16. Jackson ZS, Gotlieb Al, Langille BL. Wall tissue remodelling regulates longitudinal tension in arteries. Circ Res 2002;90:918-25.
  • 17. Ingber DE. Tensegrty: the architectural basis of mechanotransduction. Annu Rev Physiol 1997;59:575-99.
  • 18. Lawson MD, Wienstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002;248:307-18.

Embryonic Vascular Plasticity

Yıl 2016, Cilt: 19 Sayı: 2, 114 - 116, 01.08.2016

Öz











The
circulatory system is a complex system containing the heart and vessels. This
system, originating from extraembryonic mesoderm, is the first functioning
system of the embryo. The formation of the angioblast and primitive placental
circulation starts at the beginning of the third week. Plasticity is defined as
the ability of a mature cell to differentiate into different cell types. Haematopoietic
stem cells can transform into neural, heart muscle, skeletal muscle and liver
cells, while the bone marrow stromal cells can transform into heart and
skeletal muscle cells. The identification of vessels as artery, venous or
capillary is closely related to remodelling. Arteries express ephrin-B2 and
D114, while veins express ephrin-B4 and neuropilin-2. With the guidance of
these genes, the identification of arteries and veins has started. Besides
genes, physical factors, including hemodynamic and cardiac output regulations,
affect vessel branching. Flow-mediated vascular plasticity is a crucial link
between the genetic and epigenetic factors. The arterial and venous
differentiations are controlled by hemodynamic factors. In conclusion, blood flow
is important for the formation of a vascular tree and activates arterial
markers, including ephrin-B2 and neuropilin-1.



Kaynakça

  • 1. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development demarcation of arterial venous doains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999;13:295-306.
  • 2. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y. Laminar shear stres inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf). Circ Res 2000;86:185-90.
  • 3. Bartling B, Tostlebe H, Darmer D, Holtz J, Silber RE, Morawietz H. Shear stres-dependent expression of apoptosis-regulating genes in endothelial cells. Biochem Biophys Res Commun 2000;278:740-6.
  • 4. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin- B2 and its receptor Eph-B4. Cell 1998;93:741-53.
  • 5. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, et al. Dossage-sensitive requirements of Mouse DII4 in artery development. Genes Dev 2004;18:2474-8.
  • 6. Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, et al. Haplo insufficiency of δ-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 2004;101:15949-54.
  • 7. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 2000;14:1313-8.
  • 8. Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G. Differential expression of neuropilin-2 in arteries and veins. Mech Dev 2001;109:115-9.
  • 9. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sunberg JP, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000;14:1343-52.
  • 10. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 2001;128:3359-70.
  • 11. Rouwet EV, Tintu AN, Schellings MW, van Bilsen M, Lutgens E, Hofstra L, et al. Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 2002;105:2791-6.
  • 12. Ruijtenbeek K, le Noble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, et al. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 2000;102:2892-7.
  • 13. Ie Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijensen R, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 2004;131:361-75.
  • 14. Ie Noble, Fleury V, Pries A, Corvol P, Eichman A, Reneman RS. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovascular Res 2005;65:619-28.
  • 15. Nguyen TH, Eichmann A, Le Noble F, Fleury V. Dynamics of vascular branching morphogenesis: the effect of blood and tissue flow. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73:061907.
  • 16. Jackson ZS, Gotlieb Al, Langille BL. Wall tissue remodelling regulates longitudinal tension in arteries. Circ Res 2002;90:918-25.
  • 17. Ingber DE. Tensegrty: the architectural basis of mechanotransduction. Annu Rev Physiol 1997;59:575-99.
  • 18. Lawson MD, Wienstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002;248:307-18.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Ahmet Çağrı Aykan

Banu Şahin Yıldız Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 19 Sayı: 2

Kaynak Göster

Vancouver Aykan AÇ, Şahin Yıldız B. Embriyonun Vasküler Gelişimi. Koşuyolu Heart Journal. 2016;19(2):114-6.