Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor Bileşiklerinin Solar Tuzun Termo-Fiziksel Özelliklerine Etkileri

Yıl 2021, , 305 - 322, 12.04.2021
https://doi.org/10.17134/khosbd.913808

Öz

Mühendislikte özellikle güç üretiminde ürün olarak ya da üretim süreçlerinin çıktısı olarak ısı enerjisi üretilir. Üretilen ısı, proseslerin sürekliliği için sistem dışına aktarılır. Bu ısı transfer işlemi üç ana mekanizma içinde ve birçok farklı yöntem vasıtasıyla gerçekleştirilir. Söz konusu yöntemlerden sıkça tercih edilenlerden bir tanesi de sistem sınırlarından ihraç edilmek istenen ısıyı bir ısı taşıyıcı akışkan aracılığıyla uzaklaştırmaktır. HTF (Heat Transfer Fluid – Isı Taşıyıcı Akışkan) de denilen bu akışkanların kullanım alanları çok geniştir. HTF’lerin en bilinenlerinden biri Solar Tuz isimli ötektik eriyik nitrat tuzu karışımıdır. Bu karışım öncelikli olarak güneş enerjisi sistemleri olmak üzere kimya ve diğer sektörlerde de tercih edilmektedir. Yüksek sıcaklıktaki kararlılığı ve ısıl özellikleri sayesinde onlarca yıldır hala ciddi talep görmektedir. Bu karışımın en ciddi sorunu yüksek erime sıcaklığı (~220 ℃)’dir. Bu değeri düşürmek için Solar Tuz’a çeşitli maddeler katılmakta ve hem erime sıcaklığının düşürülmesi hem de ısıl özelliklerinin iyileştirilmesi hedeflenmektedir. Bu çalışmada söz konusu akışkana bor bileşikleri eklenmiş ve akışkanın bazı özellikleri analiz edilmiştir. Borun seçilmesinde ülkemizin bor mineralleri konusunda dünyanın en zengin ülkesi olması temel motivasyon kaynağı olmuştur. Bor ve bileşiklerinin katma değeri ve kullanım alanlarının artması amacıyla yapılan bu çalışmada Solar Tuz’a %0,5, %1 ve %2 oranlarında amorf bor oksit, camsı bor oksit ve hegzagonal bor nitrür eklenmiş ve erime noktası ve kütle kaybı analizi gerçekleştirilmiştir. Erime noktası değerleri 215-226℃ arasında sıralanırken kütle kaybında %0,029 – %1 bandında gerçekleşmiştir. Erime noktası ve kütle kaybı analizi bir arada değerlendirildiğinde %2 bor nitrür içeren numune en uygun değerleri sağlamıştır.

Kaynakça

  • Çengel, Y. ve Boles, M. A. (2011). Termodinamik, Mühendislik Yaklaşımıyla. (Çev. Editörü A. Pınarbaşı), İzmir: Güven Kitabevi. Awad, A., Navarro, H., Ding, Y., Wen, D. (2017). Thermal-Physical Properties of Nanoparticle-Seeded Nitrate Molten Salts, Renewable Energy, 120, 275-288.
  • Chung, S. J., Leonard, J. P., Nettleship, I., Lee, J. K., Soong, Y., and Martello, D. V., (2009). Characterization of ZnO Nanoparticle Suspension in Water: Effectiveness of Ultrasonic Dispersion. Powder Technology, 194 (1-2), 75-80.
  • Dudda, B., Shin, D. (2012). Investigation of Molten Salt Nanomaterials as Thermal Energy Storage in Concentrated Solar Power, Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, 813-818.
  • Gavarrell, P. G., Fereres, S. (2015). An Experimental Study of the Effect of SiO2 Nanoparticles on the Phase Change Characteristics of KNO3-NaNO3 Mixtures for Thermal Energy Storage, Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, 007-015.
  • González-Roubaud E, Pérez-Osorio D, Prieto C. (2017). Review of Commercial Thermal Energy Storage in Concentrated Solar Power Plants: Steam vs. Molten Salts. Renewable Sustainable Energy Reviews, 80, (Supplement C), 133–148.
  • Hu, Y., He, Y., Zhang, Z., Wen, D. (2017). Effect of Al2O3 Nanoparticle Dispersion on the Specific Heat Capacity of a Eutectic Binary Nitrate Salt for Solar Power Applications, Energy Conversion and Management, 142, 366–373.
  • İlhan, B., Kurt, M., Ertürk, H. (2016). Experimental Investigation of Heat Transfer Enhancement and Viscosity Change of hBN Nanofluids, Experimental Thermal and Fluid Science, 77, 272-283.
  • Jamal-Abad, M. T., Zamzamian, A., Dehghan, M. (2013). Experimental Studies on the Heat Transfer and Pressure Drop Characteristics of Cu–Water and Al–Water Nanofluid in a Spiral Coil. Experimental Thermal and Fluid Science, 47, 206–212.
  • Krishnam, M., Bose, S., Das, C. (2016). Boron Nitride (BN) Nanofluids as Cooling Agent in Thermal Management System (TMS), Applied Thermal Engineering 106, 951-958.
  • Lasfargues, M., Geng, Q., Cao, H., Ding, Y. (2015). Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures, Nanomaterials 5(3), 1136-1146.
  • Lian, J., Kim, T., Liu, X., Ma, J., Zheng, W. (2009). Ionothermal Synthesis of Turbostratic Boron Nitride Nanoflakes at Low Temperature. The Journal of Physical Chemistry, C 113, 9135-9140.
  • Lo, C. H., Tsung, T. T., Chen, L. C., Su, C. H., Lin, H. M. (2005). Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticles Synthesis System (SANSS). Journal of Nanoparticle Research, 7, 313–320.
  • Mirkarimi, P. B., McCarty, K. F., Medlin, D. L. (1997). Rewiew of Advances in Cubic Boron Nitride Film Synthesis. Materials Science and Engineering: R: Reports, 21 (2), 47-100.
  • Muñoz-Sanchez, B., Maestre, J. N., Imbuluzqueta, G., Marañòn, I., Iparraguirre-Torres, I., Garcia-Romero, A.M. (2017). A Precise Method to Measure the Specific Heat of Solar Salt-Based Nanofluids, Journal of Thermal Analysis and Calorimetry 129, 905-914.
  • Myers, P. D. Jr., Alam, T. E., Kamal, R., Goswami, D. Y., Stefanakos, E. (2016). Nitrate Salts Doped with Cuo Nanoparticles for Thermal Energy Storage with Improved Heat Transfer, Applied Energy, 165, 225–233.
  • Riazi, H., Mesgari, S., Ahmed, N. A., Taylor, R. (2016). The Effect of Nanoparticle Morphology on the Specific Heat of Nanosalts, International Journal of Heat and Mass Transfer, 94, 254–261.
  • Saranprabhu, M. K., Rajan, K. S. (2019). Enhancement of Solid-Phase Thermal Conductivity and Specific Heat of Solar Salt Through Addition of MWCNT: New Observations and Implications for Thermal Energy Storage, Applied Nanoscience, 9, 2117-2126.
  • Shi, L., Gu, Y., Chen, L., Qian Y., Yang, Z., Ma, J. (2004). Synthesis and Morphology Control of Nanocrystalline Boron Nitride. Journal of Solid State Chemistry, 177 (3), 721-724.
  • Siegel, N. P., Bradshaw, R. W., Cordaro, J. B., Kruizenga, A. M., (2011). Thermophysical Property Measurement of Nitrate Salt Heat Transfer Fluids. Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, USA, 439-446.
  • Solangi, K. H., Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M. N. M, Gharehkhani S., Ten K. H. (2015). A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids. Energy, 89, 1065–1086.
  • Xie, Q., Zhu, Q., Li, Y. (2016). Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets, Nanoscale Research Letters, 11(306), 1-7.
  • Yu, W., France, D. M., Routbort, J. L., Choi, S.U.S., (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 29 (5), 432-460.
  • Zyla, G., Fal, J., Traciak, J., Gizowska, M., Perkowski, K. (2016). Huge Thermal Conductivity Enhancement in Boron Nitride – Ethylene Glycol Nanofluids, Material Chemistry and Physics, 180, 250-255.
  • Alkoy, S. (1994). Turbostratik Bor Nitrürün Kristalizasyon Davranışı ve Karakterizasyonu, (Yayımlanmamış Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Bayraktar, F. S. (2020). Yoğunlaştırılmış Güneş Enerjisi (CSP) Uygulamaları İçin Bor Katkılı Eriyik Tuzların Termal Özelliklerinin İncelenmesi. (Yüksek Lisans Tezi), Kütahya Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, Kütahya.
  • Top, A. (2016). Synthesis & Characterization of Boron Nitride Nanostructures and Application in Nanocomposites. (Yayımlanmamış Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Penn State University (PSU) (2021). Utility Solar Power and Concentration, Fluid Storage. https://www.e-education.psu.edu/eme812/node/704 adresinden 02.09.2020 tarihinde alınmıştır.
  • SQM, (2018). Thermo-Solar Salts. https://www.sqm.com/wp-content/uploads/2018/05/Solar-salts-Book-eng.pdf adresinden 02.09.2020 tarihinde alınmıştır.
  • T. C. Enerji ve Tabii Kaynaklar Bakanlığı Eti Maden A. Ş. (Eti Maden), (2019a). Bor Oksit – Camsı, Ürün Teknik Bilgi Formu. http://www.etimaden.gov.tr/storage/pages/March2019/4-1-bor-oksit-camsi. pdf adresinden 02.09.2020 tarihinde alınmıştır.
  • T. C. Enerji ve Tabii Kaynaklar Bakanlığı Eti Maden A. Ş. (Eti Maden), (2019b). Bor Oksit – Gözenekli, Ürün Teknik Bilgi Formu. http://www.etimaden.gov.tr/storage/pages/March2019/4-2-bor-oksit- gozenekli.pdf adresinden 02.09.2020 tarihinde alınmıştır.

Effects of Boron Compounds on the Thermophysical Properties of Solar Salt

Yıl 2021, , 305 - 322, 12.04.2021
https://doi.org/10.17134/khosbd.913808

Öz

In engineering, especially power generation, heat energy is produced as a product in power generation or as an output of production processes. Generated heat is transferred out of the system for the continuity of the power cycles. This heat transfer process is carried out in three main mechanisms and through many different methods. One of the most preferred methods is to remove the heat to be expelled from the system boundaries by means of a heat transfer fluid. These fluids, also called HTF (Heat Transfer Fluid), have a wide range of uses. One of the most known HTFs is the eutectic molten nitrate salt mixture called as Solar Salt. This mixture is primarily preferred in solar energy systems and also preferred chemistry and other sectors. Thanks to its high temperature stability and thermal properties, it has been in great demand for decades. The most serious problem of this mixture is its high melting temperature (~220 ℃). To reduce this value, various substances are added to Solar Salt and it is aimed both to decrease the melting temperature and to improve its thermal properties. In this study, boron compounds were added to the fluid and some of its properties were analyzed. The fact that our country is the richest country in the world in terms of boron minerals has been the main source of motivation in selecting boron as additive. Amorphous boron oxide, glassy boron oxide and hexagonal boron nitride at 0.5%, 1% and 2% were added to Solar Salt in this study, which was carried out to increase the added value and usage areas of boron and its compounds, and melting point and mass loss analysis were performed. While the melting point values were spread between 215-226 ℃, the mass loss occurred in the range of 0.029% - 1%. As a result of the melting point and mass loss analysis together, the sample containing 2% boron nitride provided the most suitable values.

Kaynakça

  • Çengel, Y. ve Boles, M. A. (2011). Termodinamik, Mühendislik Yaklaşımıyla. (Çev. Editörü A. Pınarbaşı), İzmir: Güven Kitabevi. Awad, A., Navarro, H., Ding, Y., Wen, D. (2017). Thermal-Physical Properties of Nanoparticle-Seeded Nitrate Molten Salts, Renewable Energy, 120, 275-288.
  • Chung, S. J., Leonard, J. P., Nettleship, I., Lee, J. K., Soong, Y., and Martello, D. V., (2009). Characterization of ZnO Nanoparticle Suspension in Water: Effectiveness of Ultrasonic Dispersion. Powder Technology, 194 (1-2), 75-80.
  • Dudda, B., Shin, D. (2012). Investigation of Molten Salt Nanomaterials as Thermal Energy Storage in Concentrated Solar Power, Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, 813-818.
  • Gavarrell, P. G., Fereres, S. (2015). An Experimental Study of the Effect of SiO2 Nanoparticles on the Phase Change Characteristics of KNO3-NaNO3 Mixtures for Thermal Energy Storage, Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, 007-015.
  • González-Roubaud E, Pérez-Osorio D, Prieto C. (2017). Review of Commercial Thermal Energy Storage in Concentrated Solar Power Plants: Steam vs. Molten Salts. Renewable Sustainable Energy Reviews, 80, (Supplement C), 133–148.
  • Hu, Y., He, Y., Zhang, Z., Wen, D. (2017). Effect of Al2O3 Nanoparticle Dispersion on the Specific Heat Capacity of a Eutectic Binary Nitrate Salt for Solar Power Applications, Energy Conversion and Management, 142, 366–373.
  • İlhan, B., Kurt, M., Ertürk, H. (2016). Experimental Investigation of Heat Transfer Enhancement and Viscosity Change of hBN Nanofluids, Experimental Thermal and Fluid Science, 77, 272-283.
  • Jamal-Abad, M. T., Zamzamian, A., Dehghan, M. (2013). Experimental Studies on the Heat Transfer and Pressure Drop Characteristics of Cu–Water and Al–Water Nanofluid in a Spiral Coil. Experimental Thermal and Fluid Science, 47, 206–212.
  • Krishnam, M., Bose, S., Das, C. (2016). Boron Nitride (BN) Nanofluids as Cooling Agent in Thermal Management System (TMS), Applied Thermal Engineering 106, 951-958.
  • Lasfargues, M., Geng, Q., Cao, H., Ding, Y. (2015). Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures, Nanomaterials 5(3), 1136-1146.
  • Lian, J., Kim, T., Liu, X., Ma, J., Zheng, W. (2009). Ionothermal Synthesis of Turbostratic Boron Nitride Nanoflakes at Low Temperature. The Journal of Physical Chemistry, C 113, 9135-9140.
  • Lo, C. H., Tsung, T. T., Chen, L. C., Su, C. H., Lin, H. M. (2005). Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticles Synthesis System (SANSS). Journal of Nanoparticle Research, 7, 313–320.
  • Mirkarimi, P. B., McCarty, K. F., Medlin, D. L. (1997). Rewiew of Advances in Cubic Boron Nitride Film Synthesis. Materials Science and Engineering: R: Reports, 21 (2), 47-100.
  • Muñoz-Sanchez, B., Maestre, J. N., Imbuluzqueta, G., Marañòn, I., Iparraguirre-Torres, I., Garcia-Romero, A.M. (2017). A Precise Method to Measure the Specific Heat of Solar Salt-Based Nanofluids, Journal of Thermal Analysis and Calorimetry 129, 905-914.
  • Myers, P. D. Jr., Alam, T. E., Kamal, R., Goswami, D. Y., Stefanakos, E. (2016). Nitrate Salts Doped with Cuo Nanoparticles for Thermal Energy Storage with Improved Heat Transfer, Applied Energy, 165, 225–233.
  • Riazi, H., Mesgari, S., Ahmed, N. A., Taylor, R. (2016). The Effect of Nanoparticle Morphology on the Specific Heat of Nanosalts, International Journal of Heat and Mass Transfer, 94, 254–261.
  • Saranprabhu, M. K., Rajan, K. S. (2019). Enhancement of Solid-Phase Thermal Conductivity and Specific Heat of Solar Salt Through Addition of MWCNT: New Observations and Implications for Thermal Energy Storage, Applied Nanoscience, 9, 2117-2126.
  • Shi, L., Gu, Y., Chen, L., Qian Y., Yang, Z., Ma, J. (2004). Synthesis and Morphology Control of Nanocrystalline Boron Nitride. Journal of Solid State Chemistry, 177 (3), 721-724.
  • Siegel, N. P., Bradshaw, R. W., Cordaro, J. B., Kruizenga, A. M., (2011). Thermophysical Property Measurement of Nitrate Salt Heat Transfer Fluids. Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, USA, 439-446.
  • Solangi, K. H., Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M. N. M, Gharehkhani S., Ten K. H. (2015). A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids. Energy, 89, 1065–1086.
  • Xie, Q., Zhu, Q., Li, Y. (2016). Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets, Nanoscale Research Letters, 11(306), 1-7.
  • Yu, W., France, D. M., Routbort, J. L., Choi, S.U.S., (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 29 (5), 432-460.
  • Zyla, G., Fal, J., Traciak, J., Gizowska, M., Perkowski, K. (2016). Huge Thermal Conductivity Enhancement in Boron Nitride – Ethylene Glycol Nanofluids, Material Chemistry and Physics, 180, 250-255.
  • Alkoy, S. (1994). Turbostratik Bor Nitrürün Kristalizasyon Davranışı ve Karakterizasyonu, (Yayımlanmamış Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Bayraktar, F. S. (2020). Yoğunlaştırılmış Güneş Enerjisi (CSP) Uygulamaları İçin Bor Katkılı Eriyik Tuzların Termal Özelliklerinin İncelenmesi. (Yüksek Lisans Tezi), Kütahya Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü, Kütahya.
  • Top, A. (2016). Synthesis & Characterization of Boron Nitride Nanostructures and Application in Nanocomposites. (Yayımlanmamış Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Penn State University (PSU) (2021). Utility Solar Power and Concentration, Fluid Storage. https://www.e-education.psu.edu/eme812/node/704 adresinden 02.09.2020 tarihinde alınmıştır.
  • SQM, (2018). Thermo-Solar Salts. https://www.sqm.com/wp-content/uploads/2018/05/Solar-salts-Book-eng.pdf adresinden 02.09.2020 tarihinde alınmıştır.
  • T. C. Enerji ve Tabii Kaynaklar Bakanlığı Eti Maden A. Ş. (Eti Maden), (2019a). Bor Oksit – Camsı, Ürün Teknik Bilgi Formu. http://www.etimaden.gov.tr/storage/pages/March2019/4-1-bor-oksit-camsi. pdf adresinden 02.09.2020 tarihinde alınmıştır.
  • T. C. Enerji ve Tabii Kaynaklar Bakanlığı Eti Maden A. Ş. (Eti Maden), (2019b). Bor Oksit – Gözenekli, Ürün Teknik Bilgi Formu. http://www.etimaden.gov.tr/storage/pages/March2019/4-2-bor-oksit- gozenekli.pdf adresinden 02.09.2020 tarihinde alınmıştır.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Selim Bayraktar Bu kişi benim 0000-0002-8672-3511

Ramazan Köse Bu kişi benim 0000-0001-6041-6591

Mükerrem Şahin Bu kişi benim 0000-0002-7217-5059

Yayımlanma Tarihi 12 Nisan 2021
Gönderilme Tarihi 3 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE F. S. Bayraktar, R. Köse, ve M. Şahin, “Bor Bileşiklerinin Solar Tuzun Termo-Fiziksel Özelliklerine Etkileri”, Savunma Bilimleri Dergisi, sy. 39, ss. 305–322, Nisan 2021, doi: 10.17134/khosbd.913808.