Araştırma Makalesi
BibTex RIS Kaynak Göster

Ticari ve Askerî Elektronik Cihazlarda Kullanılan Yüzeye Montajlı Yeni Nesil Devre Elemanlarının Tamir Sürecindeki Etkili Faktörler

Yıl 2020, Sayı: 38, 211 - 243, 02.11.2020

Öz

Son yıllarda elektrikli araçlar, insansız hava araçları, haberleşme uydusu gibi uzay ve havacılık sistemlerinin millî kaynaklar ile geliştirilme çalışmaları artmıştır. Bu nedenle de savunma sanayi ürünlerinin imalat teknolojilerine giderek artan ölçüde ihtiyaç duyulmaktadır. Baskı devre kartı (BDK) tamirini sağlayan tekrar üretim (remanufacturing) olarak da adlandırılan tamir teknolojisi de bu teknolojilerden biridir. BDK tamiri, üretim esnasında veya kullanım sırasında hatası veya arızası tespit edilen elektronik ekipmanın genel performansını ve güvenilirliğini olumsuz yönde etkilemeden hataya neden olan elektronik elemanın ekonomik bir şekilde yenisi ile değiştirilmesini hedefler. Tamirin sağlıklı bir şekilde yapılması, ürünün yaşam döngüsü içindeki güvenilirliğini doğrudan etkiler. Tamir sürecindeki eksik ve hatalı uygulamalar kullanım sırasında arızalara neden olur. Bu da hayati tehlike veya istenmeyen sonuçlar yaratabilir. Elektronik tamir, elektronik üretimin özel ihtisas konusu olarak literatürde yerini almıştır. Ancak konu ile ilgili ulusal bilgi birikimi yetersizdir.
Bu çalışmanın amacı montajlı kart (MK) üzerinde yer alan ızgara dizinimli dâhil yeni nesil yüzeye monte (YM) elektronik devre elemanı (EDE) tamir sürecini, sürecin önemli evrelerini ve süreçteki etkili faktörleri ortaya koymaktır. Çalışmanın içeriği elektronik sistemlerde YM EDE teknoloji kullanan savunma sanayi kuruluşlarının MK tamir süreçlerinin yapılandırılmasına katkı sağlayacaktır. Ayrıca, çalışmanın çıktıları otonom MK tamir sistemlerinin geliştirilebilmesi için gerekli olan temel girdiler olup ürün-makine ilişkisi kurulmasında kullanılabilir.

Kaynakça

  • Ahlhelm, N. (2013). An Introduction to High Reliability Soldering and Circuit Board Repair, ISBN: 1453657460 / 9781453657461.
  • Blackwell, G. R., (2000). Surface Mount Technology, The Electronic Packaging Handbook, Ed. Blackwell G. R., Boca Raton: CRC Press LLC.
  • Bogatin, E., Potter D., Peters L., (1997). Roadmaps of packaging technology, chp 10, ISBN-10: 1877750611. http://smithsonianchips.si.edu/ice/cd/PKG_BK/ CHAPT_10.PDF.
  • Cluff, K.D., ve Pecht M.G., (2001). Electronic Packaging Technologies, Mechanical Engineering Handbook, Ed. Kreith F., Boca Raton: CRC Press LLC.
  • Geren, N., (2001). Model Based Flexible PCBA Rework Cell Design, Computer-Aided Design, Engineering and Manufacturing Systems Techniques and Applications. Vol V. The Design of Manufacturing Systems, Editor Cornelius Leondes, Chapter 6, p.1-44 ISBN. 0-8493-0997-2.
  • Lee, N.C. (2002). Reflow Soldering Processes and Troubleshooting SMT, BGA, CSP, and Flip Chip Technologies, Butterworth-Heinemann, Boston, MA.
  • Licari, J.J. ve Swanson D.W. (2011). Adhesives Technology for Electronic Applications (Second Edition), https://doi.org/10.1016/B978-081551513-5.50006-1.
  • Schwartz, Mel M. (2014). Soldering: Understanding Basics, ASM International, The materials Information Society. ISBN 9781627080583.
  • Suhir, E., Lee Y.C., ve Wong C.P. (2007). Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume I Materials Physics - Materials Mechanics. Volume II Physical Design - Reliability and Packaging, Springer Science & Business Media, 1460 sayfa.
  • Tong, Ho-M, Lai Yi-S, ve Wong C.P. (2013). Advanced Flip Chip Packaging, Springer ISBN 978-1-4419-5767-2.
  • Beckett, P.M., Fleming A.R., Gilbert J.M., ve Whitehead D.G. (2002). The Finite Element Modeling of Laser Soldering for Electronic Assemblies, Int. Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 15(1), 265–281.
  • Chan, Y. C., Tu P. L., ve Hung K. C. (2001). Study of The Self Alignment of No-Flow Underfill for Micro-BGA Assembly, Microelectronics Reliability, 1867-1875.
  • Chennagiri, G., Iyer S. S., ve Srihari, K. H. (2011). Rework of Lead-Free Area Array Packages Assembled on Ultrathin Flexible Substrates, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1(4), 611-621.
  • Çakırca, M. (2004). Alternative proposals for automating rework of advanced surface mount components, Çukurova University Institute of Natural and Applied Sciences, Department of Mechanical Engineering, Adana.
  • Çelik, M. ve Genç C. (2010). Baskı devre kart elemanlarının mekanik yorulma ve hassasiyet analizleri, Gazi Üniv. Müh. Mim. Fak. Dergisi. 25(1), 27-38.
  • Demircan, T. ve Özdemir, E. (2019). Askerî Sistemlerin Yüksek Sıcaklıklara Çıkan Devre Elemanlarının Etkin Olarak Soğutulması, Savunma Bilimleri Dergisi, 18(1). ISSN (Basılı): 1303-6831 ISSN (Online): 2148-1776.
  • Du, J. (2018). Reliability Analysis for High-Density PCA after Multiple BGA Reworks, 2018 3rd International Conference on System Reliability and Safety (ICSRS).
  • Fidan, I., Kraft, R., Ruff, L. ve Derby, S. (1998). Integration steps of a fully-automated remanufacturing cell system used for fine-pitch surface mounted devices, IEEE Transactions on Components Packaging and Manufacturing Technology, Part A, 21(1), 71-78.
  • Foster, A.W. (2019). Predicting Solder Defects in Printed Circuit Board Assembly (PCBA) Process, Masschusetts Instute of Technology, Master Thesis.
  • Geren, N., Chan, C. ve LO, E. (1992). Computer-Integrated Automatic PCBA Rework, Integrated Manufacturing Systems, 3(4), 38-43, DOİ:10.1108/09576069210018943.
  • Geren, N. ve Redford, A.H. (1994). The Significance of Desoldering and Resoldering Methods in Robotic Automated Rework, Journal of Electronics Manufacturing, 4(1), 41-51.
  • Geren, N. ve Redford, A. H. (1996). Automated Rework of Printed Circuit Board Assemblies: Methods and Procedures, Int. Journal of Computer Integrated Manufacturing, 9(1), 48-60.
  • Geren, N. (2003). Determination and Comparison of Surface Mount Component Rework Cycle Times of Manual and Fully Automated Robotic Rework Stations for Rework Technology Selection, IEEE Transactions on Electronics Packaging Manufacturing, 26(2), 123-132.
  • Geren, N., Çakırca, M. ve Bayramoğlu, M. (2006). Design of a flexible assembly and remanufacturing cell for advanced SM components: selection of cell design concept based on reflow tools, Soldering & Surface Mount Technology, 18(1), 29–43.
  • Geren, N., Sarıgül, Ç. ve Bayramoğlu, M. (2011). Systematic mechanical design approach for a flexible printed circuit board assemblies (PCBA) rework cell: part I – generic mechanical design procedure, Soldering and Surface Mount Technology, 23(4), 244–256.
  • Geren, N., Sarıgül, Ç. ve Bayramoğlu, M. (2012). Systematic mechanical design approach for a flexible printed circuit board assemblies (PCBA) rework cell: part II - conceptual design of soldering and desoldering system, Soldering and Surface Mount Technology, 24(3), 151 - 166. DOI: 10.1108/09540911211244313.
  • Ghaffarian, R. (2003). Technology Readiness Overview: Ball Grid Array and Chip Scale Packaging, Nasa Electronic parts and packaging program (NEPP), http://nepp.nasa.gov.
  • Gowda, A., Srihari K. ve Primavera A. (2001). Lead-Free Rework Process for Chip Scale Packages, Proceedings of the Advanced Packaging Technology Conference, July, 8p. published 6/12/2001.
  • Gowda, A., Primavera, A., Rampurawala, M., ve Srihari, K. (2002). Rework and Reliability of Underfilled CSP Assemblies, Proceedings of the IEEE Electronic Components and Technology Conference, pp.458-466.
  • Grosshardt, O., Nagy, B. Á ve Laetsch, A. (2019). Applying microscopic analytic techniques for failure analysis in electronic assemblies. Applied Microscopy, 49(7), https://doi.org/10.1186/s42649-019-0009-1.
  • Horsley, R. M., Ekere, N. N. ve Salam, B. (2002). Effect of Lead-Free BGA Rework on Joint Microstructure and Intermetallic Compound Formation, Proceedings of the IEEE Electronic Components and Technology Conference, 1497-1501.
  • IPC Roadmap, (2000). A Guide for Assembly of Lead-Free Electronics, Draft IV, June.
  • IPC (2011). IPC-7711B/7721B Change 1 November 1, 2011 Rework, Modification and Repair of Electronic Assemblies. Isaacs, P., Chia, K. L., Poh H. I. ve Truman, T. (2017). Process considerations for lead free assemblies, Pan Pacific Microelectronics Symposium (Pan Pacific), Kauai, HI, 1-8.
  • Jun, W., Ping, H. ve Fei, X. (2004). The effect of residual stress on the flexing strength of PCB assembly, High Density Microsystem Design and Packaging and Component Failure Analysis, HDP ’04. Proceedings of the Sixth IEEE CPMT Conference on, 30 June-3 July, 146-50.
  • Lau, Chun‐Sean, Abdullah M.Z., ve Ani C. F. (2012). Computational fluid dynamic and thermal analysis for BGA assembly during forced convection reflow soldering process, Soldering & Surface Mount Technology, 24(2), 77-91, https://doi.org/10.1108/09540911211214659.
  • Lau, Chun‐Sean, Khor, C., Soares, D., Teixeira, J. ve Abdullah, M. (2016). Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review, Soldering & Surface Mount Technology, 28(2), 41-62. https://doi.org/10.1108/SSMT-10-2015-0032.
  • Li, W. ve Sun, X. (2017). An analysis case on the failure of BGA solder joints, 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, 731-734.
  • Liu, D., Chen T., Yuan, Y., Lu, Y.F., Hong, M. ve Goh, R. (2002). Laser Reflow Plastic Ball Grid Array, Proceedings of the SPIE - The 2nd Int. Symp. on Laser Precision Microfabrication, vol. 4426, 363-366.
  • Loctite, (2000). Loctite launches the first commercially available reworkable underfill, Soldering & Surface Mount Technology, 12(2), https://doi.org/10.1108/ssmt.2000.21912bad.005.
  • Naugler, D. (2002). Area Array Rework-Size Does Matter, Circuits Assembly, July, 36-40.
  • Nguty, T.A., Ekere, N. N., Philpott, J. D. ve Jones G. D. (2000). Rework of CSP: The Effect on Surface Intermetallic Growth, Soldering & Surface Mount Technology, 35-38.
  • Philpott, J.D., Nguty, T.A., Ekere, N.N. ve Jones G. D. (1999). Effect of CSP Rework on Surface Intermetallic Growth, Proceedings of the IEEE/CPMT Int. Electronics Manufacturing Tech. Symp., 141-147.
  • Primavera, A. (1999). Influence of PCB Parameters on Chip Scale Package Assembly and Reliability-Part I, Proceedings of the 12th SMTA International, San Jose, California, September, 13p.
  • Rupprecht, H. (2002). Array Package Rework—Lead Free Throws a Curve, Circuits Assembly, July, 30-34.
  • Russell, E. (1999). A Total Flip Chip Rework Procedure, Circuits Assembly, July, 28-30.
  • Sriperumbudur, S. S. (2016). Effects of solder paste volume on PCBA yield and reliability, Master Thesis, Department of Manufacturing and Mechanical Engineering Technology, College of Applied Science and Technology, Rochester Institute of Technology, Rochester, NY, May, 2016.
  • Su, Y.Y., Srihari, K. ve Emerson, C. R. (1997). A Profile Identification System for Surface Mount Printed Circuit Board Assembly, Proceedings of the 21st Int. Conf. on Computers and Industrial Engineering, 33(1-2), 377-380.
  • Tsai, T.N. (2009). Modeling and optimization of reflow thermal profiling operation: a comparative study, Journal of the Chinese Institute of Industrial Engineers, 26(1), 480-92.
  • Tsenev, V. (2019). Post Reflow Repair Technology with Automatic SMD Assembly for Big Volume of Products, 2019 X National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 1-4.
  • Tu, P.L., Chan, Y.C. ve Hung, K. C. (2001). Reliability of microBGA Assembly Using No-Flow Underfill, Microelectronics Reliability, 1993-2000.
  • Wang, L. ve Wong, C. P. (2000). Recent Advances in Underfill Technology for Flip Chip, Ball Grid Array, and Chip Scale Package Applications, Proceedings of the IEEE Int. Symp. on Electronic Materials & Packaging, 224-231.
  • Wong, C. P., Wang, L. ve Shi, S. H. (1999). Novel High Performance No Flow and Reworkable Under fills for Flip-Chip Applications, Mat. Res. Innovat, 2(1), 232–247.
  • Wood, P. (2003). Rework with Lead-Free Solders, Circuits Assembly, August, 18-21.
  • Wölflick, P. ve Feldmann, K. (2002). Lead Free Low Cost Flip Chip Process Chain: Layout, Process, Reliability, Proceedings of the SEMI/IEEE West, Int. Electronics Manufacturing Technology (IEMT) Symposium, 27-34.
  • Xie, D., Hai, J., Wu, Z. ve Economou, M. (2019). Solder Joint Reliability of Double-Side Mounted DDR Modules for Consumer and Automotive Applications, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, pp. 486-492.
  • Yang, L., Bernstein, J. B. ve Chung, K. (2001). The Impact of Lead-Free Soldering on Electronics Packages, Microelectronics International, 20-26.
  • Yu, H. ve Shangguan, D. (2013). Solidification and reliability of lead‐free solder interconnection, Soldering & Surface Mount Technology, 25(1), 31-38. https://doi.org/10.1108/09540911311294632.
  • Yunus, M., Srihari, K., Pitarresi, J. M. ve Primavera, A., (2003). Effect of Voids on the Reliability of BGA/CSP Solder Joints, Microelectronics Reliability, 43(1), 2077–2086.
  • Circuit TC (2019). http://www.circuitrework.com/guides/7-1-1.shtml, 18.09.2019 tarihinde erişildi.
  • Czaplicki, B. (2013). Advanced Rework Technology and Processes for Next Generation Large Area Arrays, 01005, PoP and QFN Devices, Circuit Technology, September 23, http://circuittechnology.com/blog/airvac-rework-techonology-2/.
  • Henkel web (2019). 5 Eylül 2019’da https://www.henkel-adhesives.com/sg/en/product/encapsulants/loctite_eccobonduf3800.html adresinden alınmıştır.
  • Instructables web (2019). 6 Eylül 2019’da, https://www.instructables.com/id/ Simple-BGA-Reballing/ adresinden alınmıştır.
  • Intel (2007). 16 Eylül 2019’da Intel Packaging Databook, 9-Board Reflow process Recommendations, Revised 2007. https://www.intel.com/content/www/us/ en/processors/packaging-chapter-09-databook.html adresinden alınmıştır.
  • Intel Guide (2016). SMT Board Assembly Process Recommendations, Intel Manufacturing Enabling Guide March 2016, https://www.intel.com/content/dam/www/public/us/en/documents/guides/ ch2-smt-board-assembly-process-recommendations-guide.pdf
  • Johnson, R. W., Strickland M. ve Gerke D., (2005), 3-D Packaging: A Technology Review, June 23, 19 Eylül 2019’da https://nepp.nasa.gov/files/16285/ 05_037a%20Johnson%203D%20Packaging%20Report%20071805.pdf adresinden alınmıştır.

Factors Effecting Rework of New Generation Surface Mount Components Used in Commercial and Military Electronic Devices

Yıl 2020, Sayı: 38, 211 - 243, 02.11.2020

Öz

In recent years, there has been an increasing amount of efforts to develop space and aviation systems such as electric vehicles, unmanned aerial vehicles, communication satellites through national resources in Turkey. Therefore, an increasing need for manufacturing technologies of defence products has emerged. Printed circuit board assembly (PCBA) and PCBA-rework or “remanufacturing” is one of these technologies. PCBA rework technology aims to replace a defected component economically in electronic equipment without adversely affecting the overall performance, function and reliability of PCBAs. Successful rework plays a major role for product reliability and durability. Incomplete and faulty applications during the repair process may completely disable the products, causing the loss of national resources. In the case of defence products, it can create life-threatening consequences.
Electronic repair is part of electronic production. However, the literature searches reveal that national knowledge on the subject is insufficient. This study reveals the new generation surface mount (SM) electronic component (EC) repair process and the important stages of this process. The content of the study will contribute to the structuring of PCB repair processes of companies using SM technology package. In addition, the fundamental knowledge required to establish the product-machine relationship for a development of autonomous PCB repair systems is provided to the national industry.

Kaynakça

  • Ahlhelm, N. (2013). An Introduction to High Reliability Soldering and Circuit Board Repair, ISBN: 1453657460 / 9781453657461.
  • Blackwell, G. R., (2000). Surface Mount Technology, The Electronic Packaging Handbook, Ed. Blackwell G. R., Boca Raton: CRC Press LLC.
  • Bogatin, E., Potter D., Peters L., (1997). Roadmaps of packaging technology, chp 10, ISBN-10: 1877750611. http://smithsonianchips.si.edu/ice/cd/PKG_BK/ CHAPT_10.PDF.
  • Cluff, K.D., ve Pecht M.G., (2001). Electronic Packaging Technologies, Mechanical Engineering Handbook, Ed. Kreith F., Boca Raton: CRC Press LLC.
  • Geren, N., (2001). Model Based Flexible PCBA Rework Cell Design, Computer-Aided Design, Engineering and Manufacturing Systems Techniques and Applications. Vol V. The Design of Manufacturing Systems, Editor Cornelius Leondes, Chapter 6, p.1-44 ISBN. 0-8493-0997-2.
  • Lee, N.C. (2002). Reflow Soldering Processes and Troubleshooting SMT, BGA, CSP, and Flip Chip Technologies, Butterworth-Heinemann, Boston, MA.
  • Licari, J.J. ve Swanson D.W. (2011). Adhesives Technology for Electronic Applications (Second Edition), https://doi.org/10.1016/B978-081551513-5.50006-1.
  • Schwartz, Mel M. (2014). Soldering: Understanding Basics, ASM International, The materials Information Society. ISBN 9781627080583.
  • Suhir, E., Lee Y.C., ve Wong C.P. (2007). Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume I Materials Physics - Materials Mechanics. Volume II Physical Design - Reliability and Packaging, Springer Science & Business Media, 1460 sayfa.
  • Tong, Ho-M, Lai Yi-S, ve Wong C.P. (2013). Advanced Flip Chip Packaging, Springer ISBN 978-1-4419-5767-2.
  • Beckett, P.M., Fleming A.R., Gilbert J.M., ve Whitehead D.G. (2002). The Finite Element Modeling of Laser Soldering for Electronic Assemblies, Int. Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 15(1), 265–281.
  • Chan, Y. C., Tu P. L., ve Hung K. C. (2001). Study of The Self Alignment of No-Flow Underfill for Micro-BGA Assembly, Microelectronics Reliability, 1867-1875.
  • Chennagiri, G., Iyer S. S., ve Srihari, K. H. (2011). Rework of Lead-Free Area Array Packages Assembled on Ultrathin Flexible Substrates, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1(4), 611-621.
  • Çakırca, M. (2004). Alternative proposals for automating rework of advanced surface mount components, Çukurova University Institute of Natural and Applied Sciences, Department of Mechanical Engineering, Adana.
  • Çelik, M. ve Genç C. (2010). Baskı devre kart elemanlarının mekanik yorulma ve hassasiyet analizleri, Gazi Üniv. Müh. Mim. Fak. Dergisi. 25(1), 27-38.
  • Demircan, T. ve Özdemir, E. (2019). Askerî Sistemlerin Yüksek Sıcaklıklara Çıkan Devre Elemanlarının Etkin Olarak Soğutulması, Savunma Bilimleri Dergisi, 18(1). ISSN (Basılı): 1303-6831 ISSN (Online): 2148-1776.
  • Du, J. (2018). Reliability Analysis for High-Density PCA after Multiple BGA Reworks, 2018 3rd International Conference on System Reliability and Safety (ICSRS).
  • Fidan, I., Kraft, R., Ruff, L. ve Derby, S. (1998). Integration steps of a fully-automated remanufacturing cell system used for fine-pitch surface mounted devices, IEEE Transactions on Components Packaging and Manufacturing Technology, Part A, 21(1), 71-78.
  • Foster, A.W. (2019). Predicting Solder Defects in Printed Circuit Board Assembly (PCBA) Process, Masschusetts Instute of Technology, Master Thesis.
  • Geren, N., Chan, C. ve LO, E. (1992). Computer-Integrated Automatic PCBA Rework, Integrated Manufacturing Systems, 3(4), 38-43, DOİ:10.1108/09576069210018943.
  • Geren, N. ve Redford, A.H. (1994). The Significance of Desoldering and Resoldering Methods in Robotic Automated Rework, Journal of Electronics Manufacturing, 4(1), 41-51.
  • Geren, N. ve Redford, A. H. (1996). Automated Rework of Printed Circuit Board Assemblies: Methods and Procedures, Int. Journal of Computer Integrated Manufacturing, 9(1), 48-60.
  • Geren, N. (2003). Determination and Comparison of Surface Mount Component Rework Cycle Times of Manual and Fully Automated Robotic Rework Stations for Rework Technology Selection, IEEE Transactions on Electronics Packaging Manufacturing, 26(2), 123-132.
  • Geren, N., Çakırca, M. ve Bayramoğlu, M. (2006). Design of a flexible assembly and remanufacturing cell for advanced SM components: selection of cell design concept based on reflow tools, Soldering & Surface Mount Technology, 18(1), 29–43.
  • Geren, N., Sarıgül, Ç. ve Bayramoğlu, M. (2011). Systematic mechanical design approach for a flexible printed circuit board assemblies (PCBA) rework cell: part I – generic mechanical design procedure, Soldering and Surface Mount Technology, 23(4), 244–256.
  • Geren, N., Sarıgül, Ç. ve Bayramoğlu, M. (2012). Systematic mechanical design approach for a flexible printed circuit board assemblies (PCBA) rework cell: part II - conceptual design of soldering and desoldering system, Soldering and Surface Mount Technology, 24(3), 151 - 166. DOI: 10.1108/09540911211244313.
  • Ghaffarian, R. (2003). Technology Readiness Overview: Ball Grid Array and Chip Scale Packaging, Nasa Electronic parts and packaging program (NEPP), http://nepp.nasa.gov.
  • Gowda, A., Srihari K. ve Primavera A. (2001). Lead-Free Rework Process for Chip Scale Packages, Proceedings of the Advanced Packaging Technology Conference, July, 8p. published 6/12/2001.
  • Gowda, A., Primavera, A., Rampurawala, M., ve Srihari, K. (2002). Rework and Reliability of Underfilled CSP Assemblies, Proceedings of the IEEE Electronic Components and Technology Conference, pp.458-466.
  • Grosshardt, O., Nagy, B. Á ve Laetsch, A. (2019). Applying microscopic analytic techniques for failure analysis in electronic assemblies. Applied Microscopy, 49(7), https://doi.org/10.1186/s42649-019-0009-1.
  • Horsley, R. M., Ekere, N. N. ve Salam, B. (2002). Effect of Lead-Free BGA Rework on Joint Microstructure and Intermetallic Compound Formation, Proceedings of the IEEE Electronic Components and Technology Conference, 1497-1501.
  • IPC Roadmap, (2000). A Guide for Assembly of Lead-Free Electronics, Draft IV, June.
  • IPC (2011). IPC-7711B/7721B Change 1 November 1, 2011 Rework, Modification and Repair of Electronic Assemblies. Isaacs, P., Chia, K. L., Poh H. I. ve Truman, T. (2017). Process considerations for lead free assemblies, Pan Pacific Microelectronics Symposium (Pan Pacific), Kauai, HI, 1-8.
  • Jun, W., Ping, H. ve Fei, X. (2004). The effect of residual stress on the flexing strength of PCB assembly, High Density Microsystem Design and Packaging and Component Failure Analysis, HDP ’04. Proceedings of the Sixth IEEE CPMT Conference on, 30 June-3 July, 146-50.
  • Lau, Chun‐Sean, Abdullah M.Z., ve Ani C. F. (2012). Computational fluid dynamic and thermal analysis for BGA assembly during forced convection reflow soldering process, Soldering & Surface Mount Technology, 24(2), 77-91, https://doi.org/10.1108/09540911211214659.
  • Lau, Chun‐Sean, Khor, C., Soares, D., Teixeira, J. ve Abdullah, M. (2016). Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review, Soldering & Surface Mount Technology, 28(2), 41-62. https://doi.org/10.1108/SSMT-10-2015-0032.
  • Li, W. ve Sun, X. (2017). An analysis case on the failure of BGA solder joints, 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, 731-734.
  • Liu, D., Chen T., Yuan, Y., Lu, Y.F., Hong, M. ve Goh, R. (2002). Laser Reflow Plastic Ball Grid Array, Proceedings of the SPIE - The 2nd Int. Symp. on Laser Precision Microfabrication, vol. 4426, 363-366.
  • Loctite, (2000). Loctite launches the first commercially available reworkable underfill, Soldering & Surface Mount Technology, 12(2), https://doi.org/10.1108/ssmt.2000.21912bad.005.
  • Naugler, D. (2002). Area Array Rework-Size Does Matter, Circuits Assembly, July, 36-40.
  • Nguty, T.A., Ekere, N. N., Philpott, J. D. ve Jones G. D. (2000). Rework of CSP: The Effect on Surface Intermetallic Growth, Soldering & Surface Mount Technology, 35-38.
  • Philpott, J.D., Nguty, T.A., Ekere, N.N. ve Jones G. D. (1999). Effect of CSP Rework on Surface Intermetallic Growth, Proceedings of the IEEE/CPMT Int. Electronics Manufacturing Tech. Symp., 141-147.
  • Primavera, A. (1999). Influence of PCB Parameters on Chip Scale Package Assembly and Reliability-Part I, Proceedings of the 12th SMTA International, San Jose, California, September, 13p.
  • Rupprecht, H. (2002). Array Package Rework—Lead Free Throws a Curve, Circuits Assembly, July, 30-34.
  • Russell, E. (1999). A Total Flip Chip Rework Procedure, Circuits Assembly, July, 28-30.
  • Sriperumbudur, S. S. (2016). Effects of solder paste volume on PCBA yield and reliability, Master Thesis, Department of Manufacturing and Mechanical Engineering Technology, College of Applied Science and Technology, Rochester Institute of Technology, Rochester, NY, May, 2016.
  • Su, Y.Y., Srihari, K. ve Emerson, C. R. (1997). A Profile Identification System for Surface Mount Printed Circuit Board Assembly, Proceedings of the 21st Int. Conf. on Computers and Industrial Engineering, 33(1-2), 377-380.
  • Tsai, T.N. (2009). Modeling and optimization of reflow thermal profiling operation: a comparative study, Journal of the Chinese Institute of Industrial Engineers, 26(1), 480-92.
  • Tsenev, V. (2019). Post Reflow Repair Technology with Automatic SMD Assembly for Big Volume of Products, 2019 X National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 1-4.
  • Tu, P.L., Chan, Y.C. ve Hung, K. C. (2001). Reliability of microBGA Assembly Using No-Flow Underfill, Microelectronics Reliability, 1993-2000.
  • Wang, L. ve Wong, C. P. (2000). Recent Advances in Underfill Technology for Flip Chip, Ball Grid Array, and Chip Scale Package Applications, Proceedings of the IEEE Int. Symp. on Electronic Materials & Packaging, 224-231.
  • Wong, C. P., Wang, L. ve Shi, S. H. (1999). Novel High Performance No Flow and Reworkable Under fills for Flip-Chip Applications, Mat. Res. Innovat, 2(1), 232–247.
  • Wood, P. (2003). Rework with Lead-Free Solders, Circuits Assembly, August, 18-21.
  • Wölflick, P. ve Feldmann, K. (2002). Lead Free Low Cost Flip Chip Process Chain: Layout, Process, Reliability, Proceedings of the SEMI/IEEE West, Int. Electronics Manufacturing Technology (IEMT) Symposium, 27-34.
  • Xie, D., Hai, J., Wu, Z. ve Economou, M. (2019). Solder Joint Reliability of Double-Side Mounted DDR Modules for Consumer and Automotive Applications, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, pp. 486-492.
  • Yang, L., Bernstein, J. B. ve Chung, K. (2001). The Impact of Lead-Free Soldering on Electronics Packages, Microelectronics International, 20-26.
  • Yu, H. ve Shangguan, D. (2013). Solidification and reliability of lead‐free solder interconnection, Soldering & Surface Mount Technology, 25(1), 31-38. https://doi.org/10.1108/09540911311294632.
  • Yunus, M., Srihari, K., Pitarresi, J. M. ve Primavera, A., (2003). Effect of Voids on the Reliability of BGA/CSP Solder Joints, Microelectronics Reliability, 43(1), 2077–2086.
  • Circuit TC (2019). http://www.circuitrework.com/guides/7-1-1.shtml, 18.09.2019 tarihinde erişildi.
  • Czaplicki, B. (2013). Advanced Rework Technology and Processes for Next Generation Large Area Arrays, 01005, PoP and QFN Devices, Circuit Technology, September 23, http://circuittechnology.com/blog/airvac-rework-techonology-2/.
  • Henkel web (2019). 5 Eylül 2019’da https://www.henkel-adhesives.com/sg/en/product/encapsulants/loctite_eccobonduf3800.html adresinden alınmıştır.
  • Instructables web (2019). 6 Eylül 2019’da, https://www.instructables.com/id/ Simple-BGA-Reballing/ adresinden alınmıştır.
  • Intel (2007). 16 Eylül 2019’da Intel Packaging Databook, 9-Board Reflow process Recommendations, Revised 2007. https://www.intel.com/content/www/us/ en/processors/packaging-chapter-09-databook.html adresinden alınmıştır.
  • Intel Guide (2016). SMT Board Assembly Process Recommendations, Intel Manufacturing Enabling Guide March 2016, https://www.intel.com/content/dam/www/public/us/en/documents/guides/ ch2-smt-board-assembly-process-recommendations-guide.pdf
  • Johnson, R. W., Strickland M. ve Gerke D., (2005), 3-D Packaging: A Technology Review, June 23, 19 Eylül 2019’da https://nepp.nasa.gov/files/16285/ 05_037a%20Johnson%203D%20Packaging%20Report%20071805.pdf adresinden alınmıştır.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Necdet Geren Bu kişi benim 0000-0002-9645-0852

Murat Çakırca Bu kişi benim 0000-0002-7933-3320

Yayımlanma Tarihi 2 Kasım 2020
Gönderilme Tarihi 2 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 38

Kaynak Göster

IEEE N. Geren ve M. Çakırca, “Ticari ve Askerî Elektronik Cihazlarda Kullanılan Yüzeye Montajlı Yeni Nesil Devre Elemanlarının Tamir Sürecindeki Etkili Faktörler”, Savunma Bilimleri Dergisi, sy. 38, ss. 211–243, Kasım 2020.