Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Photocatalytic Degradation of Methylene Blue, Rhodamine B, Malachite Green and Congo Red Dyes with ZnO Nanoparticles

Yıl 2025, Cilt: 2 Sayı: 1, 11 - 21, 19.06.2025
https://doi.org/10.64330/kiufemte.1572726

Öz

Photocatalysis is a promising method for the removal of dye-induced pollution in water using solar energy. Over time, the interest in metal oxides as photocatalysts has increased. In this study, ZnO nanostructured particles were synthesized using the hydrothermal method. The synthesized nanostructured particles were characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The photocatalytic effects of the synthesized samples were investigated in aqueous solutions of methylene blue (MM), rhodamine B (RB), congo red (KK), and malachite green (MY) under a 300W xenon light. The photocatalytic degradation properties of the samples were evaluated by calculating the decreases in absorption at the respective wavelengths in the UV-Vis absorption spectra (methylene blue 664 nm, rhodamine B 554 nm, malachite green 617 nm, and congo red 500 nm). Furthermore, the ZnO nanostructured particles were reported to achieve degradation rates of 99.5% for methylene blue within 80 minutes, 96.5% for malachite green within 70 minutes, 99.8% for congo red within 100 minutes, and 100% for rhodamine B within 180 minutes.

Kaynakça

  • Abebe, B., Murthy, H. C. A., & Amare, E. (2020). Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environmental Nanotechnology, Monitoring & Management, 14, 100336. https://doi.org/10.1016/J.ENMM.2020.100336
  • Batra, V., Kaur, I., Pathania, D., Sonu, & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314. https:/ doi.org/10.1016/J.APSADV.2022.100314
  • Bhapkar, A. R., & Bhame, S. (2024). A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering, 12(3), 112553. https://doi.org/10.1016/J.JECE.2024.112553
  • Chakravorty, A., & Roy, S. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/J.SCENV.2024.100155.
  • Elmas, F., Kırkgeçit, R., Özlü Torun, H., Öztürk, E., (2023). Investigation of photochemical properties of CeO2:0.1Nd and CeO2:0.05Nd0.05 M(M: Dy, Sm, Tb), Journal of Photochemistry & Photobiology, A: Chemistry 439 (2023) 114616. https://doi.org/10.1016/j.jphotochem.2023.114616
  • Farhan Hanafi, M., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31, A141–A150. https://doi.org/10.1016/J.MATPR.2021.01.258
  • Ghaffar, S., Abbas, A., Naeem-ul-Hassan, M., Assad, N., Sher, M., Ullah, S., Alhazmi, H. A., Najmi, A., Zoghebi, K., Al Bratty, M., Hanbashi, A., Makeen, H. A., & Amin, H. M. A. (2023). Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants 2023, Vol. 12, Page 1201, 12(6), 1201. https://doi.org/10.3390/ANTIOX12061201
  • Hendrix, Y., Rauwel, E., Nagpal, K., Haddad, R., Estephan, E., Boissière, C., & Rauwel, P. (2023). Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States. Nanomaterials, 13(13). https://doi.org/10.3390/nano13131998
  • Kerli, S., Kavgacı, M., Soğuksu, A. K., & Avar, B. (2022). Photocatalytic Degradation of Methylene Blue, Rhodamine-B, and Malachite Green by Ag @ ZnO/TiO2. Brazilian Journal of Physics, 52(1), 1–11. https://doi.org/10.1007/S13538-021-01007-1/TABLES/3
  • Kerli, S., Soğuksu, A. K., Kavgacı, M., (2020). Production of nickel oxide nanostructure particles and their photocatalytic degradation of different organic dye. International Journal of Modern Physics B. © World Scienti. DOI:10.1142/S0217979220500812.
  • Lei, C., Pi, M., Jiang, C., Cheng, B., & Yu, J. (2017). Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of Colloid and Interface Science, 490, 242–251. doi:10.1016/j.jcis.2016.11.049.
  • Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science. doi:10.1016/j.apsusc.2019.04.273.
  • Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical engineering journal, 185, 1-22.
  • Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128. https://doi.org/10.1016/J.JIEC.2021.02.017
  • Rahman, T. U., Roy, H., Shoronika, A. Z., Fariha, A., Hasan, M., Islam, M. S., Marwani, H. M., Islam, A., Hasan, M. M., Alsukaibi, A. K. D., Rahman, M. M., & Awual, M. R. (2023). Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. Journal of Molecular Liquids, 388, 122764. https://doi.org/10.1016/J.MOLLIQ.2023.122764
  • Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of The Total Environment, 797, 149134. https://doi.org/10.1016/J.SCITOTENV.2021.149134
  • Sanakousar, F. M., Vidyasagar, C., Jiménez-Pérez, V. M., & Prakash, K. (2022). Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Materials Science in Semiconductor Processing, 140, 106390. https://doi.org/10.1016/J.MSSP.2021.106390
  • Sedefoglu, N. (2023). Characterization and photocatalytic activity of ZnO nanoparticles by green synthesis method. Optik, 288, 171217. https://doi.org/10.1016/J.IJLEO.2023.171217
  • Soğuksu, A. K., Kerli, S., Kavgacı, M., and Gündeş, A., (2021) “Electrochemical Properties, Antimicrobial Activity and Photocatalytic Performance of Cerium-Iron Oxide Nanoparticles. Russian Journal of Physical Chemistry A, 2022, Vol. 96, No. 1, pp. 209–215. DOI: 10.1134/S0036024422010228.
  • Soğuksu, A.K., Kerli, S., Kavun. Y., Alver, Ü., (2024). “Synthesis and characterizations of Ce-doped ZnO thin films for radiation shielding”. Optical Materials, Volume 148, February 2024, 114941.
  • Utomo, W. P., Afifah, P. A. I., Rozafia, A. I., Mahardika, A. A., Santoso, E., Liu, R., & Hartanto, D. (2024). Modulation of particle size and morphology of zinc oxide in graphitic carbon nitride/zinc oxide composites for enhanced photocatalytic degradation of methylene blue. Surfaces and Interfaces, 46, 104017.
  • Wagh, S. S., Kadam, V. S., Jagtap, C. V., Salunkhe, D. B., Patil, R. S., Pathan, H. M., & Patole, S. P. (2023). Comparative Studies on Synthesis, Characterization and Photocatalytic Activity of Ag Doped ZnO Nanoparticles. ACS Omega, 8(8), 7779–7790. https://doi.org/10.1021/acsomega.2c07499
  • Workie, A. B., Ningsih, H. S., & Shih, S. J. (2023). An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications. Journal of Analytical and Applied Pyrolysis, 170, 105915. https://doi.org/10.1016/J.JAAP.2023.105915.

Metilen Mavisi, Rodamine B, Malahit Yeşili ve Kongo Kırmızısı Boyalarının ZnO Nanopartikülleri ile Fotokatalitik Parçalanmasının İncelenmesi

Yıl 2025, Cilt: 2 Sayı: 1, 11 - 21, 19.06.2025
https://doi.org/10.64330/kiufemte.1572726

Öz

Fotokataliz, güneş enerjisi kullanılarak sudaki boya kaynaklı kirliliğin giderilmesi için umut vadeden bir yöntemdir. Zamanla, fotokatalizör olarak metal oksitlere olan ilgi artmıştır. Bu çalışmada, ZnO nano yapılı parçacıklar hidrotermal yöntem kullanılarak sentezlenmiştir. Sentezlenen nano yapılı parçacıklar X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) teknikleriyle karakterize edilmiştir. Sentezlenen numunelerin fotokatalitik etkileri, metilen mavisi (MM), rodamin B (RB), kongo kırmızısı (KK) ve malahit yeşili (MY) sulu çözeltilerinde 300W ksenon ışığı altında incelenmiştir. Numunelerin fotokatalitik bozunma özellikleri, UV-Vis emilim spektrumlarında (metilen mavisi 664 nm, rodamin B 554 nm, malahit yeşili 617 nm ve kongo kırmızısı 500 nm) ilgili dalga boylarındaki emilimdeki azalmalar hesaplanarak değerlendirilmiştir. Ayrıca, ZnO nanoyapılı parçacıkların metilen mavisi için 80 dakika içinde %99.5, malahit yeşili için 70 dakika içinde %96.5, kongo kırmızısı için 100 dakika içinde %99.8 ve rodamin B için 180 dakika içinde %100 bozunma oranlarına ulaştığı bildirilmiştir.

Kaynakça

  • Abebe, B., Murthy, H. C. A., & Amare, E. (2020). Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environmental Nanotechnology, Monitoring & Management, 14, 100336. https://doi.org/10.1016/J.ENMM.2020.100336
  • Batra, V., Kaur, I., Pathania, D., Sonu, & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314. https:/ doi.org/10.1016/J.APSADV.2022.100314
  • Bhapkar, A. R., & Bhame, S. (2024). A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering, 12(3), 112553. https://doi.org/10.1016/J.JECE.2024.112553
  • Chakravorty, A., & Roy, S. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/J.SCENV.2024.100155.
  • Elmas, F., Kırkgeçit, R., Özlü Torun, H., Öztürk, E., (2023). Investigation of photochemical properties of CeO2:0.1Nd and CeO2:0.05Nd0.05 M(M: Dy, Sm, Tb), Journal of Photochemistry & Photobiology, A: Chemistry 439 (2023) 114616. https://doi.org/10.1016/j.jphotochem.2023.114616
  • Farhan Hanafi, M., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31, A141–A150. https://doi.org/10.1016/J.MATPR.2021.01.258
  • Ghaffar, S., Abbas, A., Naeem-ul-Hassan, M., Assad, N., Sher, M., Ullah, S., Alhazmi, H. A., Najmi, A., Zoghebi, K., Al Bratty, M., Hanbashi, A., Makeen, H. A., & Amin, H. M. A. (2023). Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants 2023, Vol. 12, Page 1201, 12(6), 1201. https://doi.org/10.3390/ANTIOX12061201
  • Hendrix, Y., Rauwel, E., Nagpal, K., Haddad, R., Estephan, E., Boissière, C., & Rauwel, P. (2023). Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States. Nanomaterials, 13(13). https://doi.org/10.3390/nano13131998
  • Kerli, S., Kavgacı, M., Soğuksu, A. K., & Avar, B. (2022). Photocatalytic Degradation of Methylene Blue, Rhodamine-B, and Malachite Green by Ag @ ZnO/TiO2. Brazilian Journal of Physics, 52(1), 1–11. https://doi.org/10.1007/S13538-021-01007-1/TABLES/3
  • Kerli, S., Soğuksu, A. K., Kavgacı, M., (2020). Production of nickel oxide nanostructure particles and their photocatalytic degradation of different organic dye. International Journal of Modern Physics B. © World Scienti. DOI:10.1142/S0217979220500812.
  • Lei, C., Pi, M., Jiang, C., Cheng, B., & Yu, J. (2017). Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of Colloid and Interface Science, 490, 242–251. doi:10.1016/j.jcis.2016.11.049.
  • Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science. doi:10.1016/j.apsusc.2019.04.273.
  • Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical engineering journal, 185, 1-22.
  • Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128. https://doi.org/10.1016/J.JIEC.2021.02.017
  • Rahman, T. U., Roy, H., Shoronika, A. Z., Fariha, A., Hasan, M., Islam, M. S., Marwani, H. M., Islam, A., Hasan, M. M., Alsukaibi, A. K. D., Rahman, M. M., & Awual, M. R. (2023). Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. Journal of Molecular Liquids, 388, 122764. https://doi.org/10.1016/J.MOLLIQ.2023.122764
  • Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of The Total Environment, 797, 149134. https://doi.org/10.1016/J.SCITOTENV.2021.149134
  • Sanakousar, F. M., Vidyasagar, C., Jiménez-Pérez, V. M., & Prakash, K. (2022). Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Materials Science in Semiconductor Processing, 140, 106390. https://doi.org/10.1016/J.MSSP.2021.106390
  • Sedefoglu, N. (2023). Characterization and photocatalytic activity of ZnO nanoparticles by green synthesis method. Optik, 288, 171217. https://doi.org/10.1016/J.IJLEO.2023.171217
  • Soğuksu, A. K., Kerli, S., Kavgacı, M., and Gündeş, A., (2021) “Electrochemical Properties, Antimicrobial Activity and Photocatalytic Performance of Cerium-Iron Oxide Nanoparticles. Russian Journal of Physical Chemistry A, 2022, Vol. 96, No. 1, pp. 209–215. DOI: 10.1134/S0036024422010228.
  • Soğuksu, A.K., Kerli, S., Kavun. Y., Alver, Ü., (2024). “Synthesis and characterizations of Ce-doped ZnO thin films for radiation shielding”. Optical Materials, Volume 148, February 2024, 114941.
  • Utomo, W. P., Afifah, P. A. I., Rozafia, A. I., Mahardika, A. A., Santoso, E., Liu, R., & Hartanto, D. (2024). Modulation of particle size and morphology of zinc oxide in graphitic carbon nitride/zinc oxide composites for enhanced photocatalytic degradation of methylene blue. Surfaces and Interfaces, 46, 104017.
  • Wagh, S. S., Kadam, V. S., Jagtap, C. V., Salunkhe, D. B., Patil, R. S., Pathan, H. M., & Patole, S. P. (2023). Comparative Studies on Synthesis, Characterization and Photocatalytic Activity of Ag Doped ZnO Nanoparticles. ACS Omega, 8(8), 7779–7790. https://doi.org/10.1021/acsomega.2c07499
  • Workie, A. B., Ningsih, H. S., & Shih, S. J. (2023). An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications. Journal of Analytical and Applied Pyrolysis, 170, 105915. https://doi.org/10.1016/J.JAAP.2023.105915.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotokimya
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Enes Balkan 0000-0002-7678-5401

Halil İbrahim Palabıçak 0009-0004-4505-6857

Ali Kemal Soğuksu 0000-0002-8370-5369

Erken Görünüm Tarihi 17 Nisan 2025
Yayımlanma Tarihi 19 Haziran 2025
Gönderilme Tarihi 23 Ekim 2024
Kabul Tarihi 22 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 1

Kaynak Göster

APA Balkan, M. E., Palabıçak, H. İ., & Soğuksu, A. K. (2025). Metilen Mavisi, Rodamine B, Malahit Yeşili ve Kongo Kırmızısı Boyalarının ZnO Nanopartikülleri ile Fotokatalitik Parçalanmasının İncelenmesi. KİÜ Fen, Mühendislik ve Teknoloji Dergisi, 2(1), 11-21. https://doi.org/10.64330/kiufemte.1572726