Araştırma Makalesi
BibTex RIS Kaynak Göster

BİYOMEKANİK ANALİZDE YÜK KALDIRMA HAREKETİ YAKALAMA YÖNTEMLERİ VE ÖRNEK UYGULAMA

Yıl 2022, , 122 - 135, 30.06.2022
https://doi.org/10.34186/klujes.1128113

Öz

Günümüzde insan hareketi biyomekaniğinin öğrenilmesinde yaygın olarak kullanılan yöntem, görüş tabanlı hareket yakalama sistemlerini kullanmaktır. Hareket yakalama sistemleri işaretçili ve işaretçisiz hareket yakalama yöntemleri olarak sınıflandırılmıştır. Hareket yakalama insan hareketlerinin takibinde sıkça başvurulan bir yöntemdir. Yük kaldırma hareketi, günlük hayatta ve endüstriyel çalışma koşullarında sıkça başvurulan faaliyetlerdendir. Yük kaldırma hareketi birçok vücut zorlanmasını içerir ve bu zorlanmalar vücut eklemlerinde hasarlara neden olabilmektedir. Özellikle bel eklemine etkiyen yükler bel rahatsızlıkları nedenlerindendir. Yetişkin nüfusun önemli bir kısmı yaşamlarında en az bir kez bel ağrısını deneyimlemiştir. İnsan vücut hareketleri analizinde biyomekanik modeller yaygın olarak kullanılmaktadır. Örnek uygulamada, bir 3 boyutlu biyomekanik model çalışması sunulmuştur. Bu modelle sağlıklı bir bireyin yük kaldırma hareketi işaretçisiz hareket yakalama yöntemi ve biyomekanik model yaklaşımıyla analiz edilmiştir. Çalışmada sağlıklı denekten, çömelerek ve öne eğilerek kaldırma tekniklerinde, 16 kg’lık yükü kaldırması istenmiştir. Yapılan kaldırma hareketleri işaretçisiz hareket yakalama cihazı Microsoft Kinect v2 sensörüyle görüntülenmiştir. Elde edilen konum bilgileri, OpenSim biyomekanik analiz programında 3 boyutlu bir insan modeline aktarılmış ve hareketin ters kinematik, ters dinamik analizleri yapılmıştır. Bu analizlerde iki kaldırma tekniğinin, L5/S1 eklemindeki kuvvet ve moment maksimum değerleri Mann-Whitney U testiyle karşılaştırılmıştır.

Kaynakça

  • [1] D. Vlasic et al., “Practical motion capture in everyday surroundings,” ACM Trans. Graph., vol. 26, no. 99, p. 35, 2007, doi: 10.1145/1239451.1239486.
  • [2] G. S. Faber, I. Kingma, A. J. M. Bakker, and J. H. van Dieën, “Low-back loading in lifting two loads beside the body compared to lifting one load in front of the body,” J. Biomech., vol. 42, no. 1, pp. 35–41, 2009, doi: 10.1016/j.jbiomech.2008.10.013.
  • [3] X. Ning, J. Zhou, B. Dai, and M. Jaridi, “The assessment of material handling strategies in dealing with sudden loading: The effects of load handling position on trunk biomechanics,” Appl. Ergon., vol. 45, no. 6, pp. 1399–1405, 2014, doi: 10.1016/j.apergo.2014.03.008.
  • [4] A. Plamondon, A. Delisle, S. Bellefeuille, D. Denis, D. Gagnon, and C. Larivière, “Lifting strategies of expert and novice workers during a repetitive palletizing task,” Appl. Ergon., vol. 45, no. 3, pp. 471–481, 2014, doi: 10.1016/j.apergo.2013.06.008.
  • [5] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: Structured-light versus Time-of-Flight Kinect,” Comput. Vis. Image Underst., vol. 139, pp. 1–20, 2015, doi: 10.1016/j.cviu.2015.05.006.
  • [6] R. de Koster, T. Le-Duc, and K. J. Roodbergen, Design and control of warehouse order picking: A literature review, vol. 182, no. 2. 2007.
  • [7] Peerless Research Group, “October 2017 September 2018,” Logistics Management and Modern Materials Handling, no. October 2017, pp. 1–38, 2018.
  • [8] Bureau of Labor Statistics, “Industry Injury and Illness Data,” 2019.
  • [9] U. Bureau of Labor Statistics, “2016 SURVEY OF OCCUPATIONAL INJURIES & ILLNESSES CHARTS PACKAGE,” 2017.
  • [10] T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised NIOSH equation for the design and evaluation of manual lifting tasks,” Ergonomics, vol. 36, no. 7, pp. 749–776, 1993, doi: 10.1080/00140139308967940.
  • [11] N. Arjmand, A. Shirazi-Adl, and B. Bazrgari, “Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks,” Clin. Biomech., vol. 21, no. 7, pp. 668–675, 2006, doi: 10.1016/j.clinbiomech.2006.03.006.
  • [12] N. Arjmand, M. Amini, A. Shirazi-Adl, A. Plamondon, and M. Parnianpour, “Revised NIOSH Lifting Equation May generate spine loads exceeding recommended limits,” Int. J. Ind. Ergon., vol. 47, pp. 1–8, 2015, doi: 10.1016/j.ergon.2014.09.010.
  • [13] A. G. Bruno, M. L. Bouxsein, and D. E. Anderson, “Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage,” J. Biomech. Eng., vol. 137, no. 8, pp. 1–10, 2015, doi: 10.1115/1.4030408.
  • [14] D. B. Chaffin, “A computerized biomechanical model—Development of and use in studying gross body actions,” J. Biomech., vol. 2, no. 4, pp. 429–441, Oct. 1969, doi: 10.1016/0021-9290(69)90018-9.
  • [15] D. Gagnon, N. Arjmand, A. Plamondon, A. Shirazi-Adl, and C. Larivière, “An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine,” J. Biomech., vol. 44, no. 8, pp. 1521–1529, 2011, doi: 10.1016/j.jbiomech.2011.03.002.
  • [16] M. Hajihosseinali, N. Arjmand, and A. Shirazi-Adl, “Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach,” J. Biomech., vol. 48, no. 2, pp. 276–282, 2015, doi: 10.1016/j.jbiomech.2014.11.033.
  • [17] M. A. Rajaee, N. Arjmand, A. Shirazi-Adl, A. Plamondon, and H. Schmidt, “Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities,” Appl. Ergon., vol. 48, pp. 22–32, 2015, doi: 10.1016/j.apergo.2014.11.002.
  • [18] S. A. Ferguson, L. L. Gaudes-MacLaren, W. S. Marras, T. R. Waters, and K. G. Davis, “Spinal loading when lifting from industrial storage bins,” Ergonomics, vol. 45, no. 6, pp. 399–414, 2002, doi: 10.1080/00140130210123507.
  • [19] B. Jia, S. Kim, and M. A. Nussbaum, “An EMG-based model to estimate lumbar muscle forces and spinal loads during complex, high-effort tasks: Development and application to residential construction using prefabricated walls,” Int. J. Ind. Ergon., vol. 41, no. 5, pp. 437–446, 2011, doi: 10.1016/j.ergon.2011.03.004.
  • [20] W. S. Marras, M. J. Jorgensen, and K. G. Davis, “Effect of foot movement and an elastic lumbar back support on spinal loading during free-dynamic symmetric and asymmetric lifting exertions,” Ergonomics, vol. 43, no. 5, pp. 653–668, 2000, doi: 10.1080/001401300184314.
  • [21] S. M. McGill, L. Marshall, and J. Andersen, “Low back loads while walking and carrying: Comparing the load carried in one hand or in both hands,” Ergonomics, vol. 56, no. 2, pp. 293–302, 2013, doi: 10.1080/00140139.2012.752528.
  • [22] B. Bazrgari and A. Shirazi-Adl, “Spinal stability and role of passive stiffness in dynamic squat and stoop lifts,” Comput. Methods Biomech. Biomed. Engin., vol. 10, no. 5, pp. 351–360, 2007, doi: 10.1080/10255840701436974.
  • [23] B. Bazrgari, A. Shirazi-Adl, and N. Arjmand, “Analysis of squat and stoop dynamic liftings: Muscle forces and internal spinal loads,” Eur. Spine J., vol. 16, no. 5, pp. 687–699, 2007, doi: 10.1007/s00586-006-0240-7.
  • [24] H. Schmidt, A. Kettler, F. Heuer, U. Simon, L. Claes, and H. J. Wilke, “Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading,” Spine (Phila. Pa. 1976)., vol. 32, no. 7, pp. 748–755, 2007, doi: 10.1097/01.brs.0000259059.90430.c2.
  • [25] I. Kingma, T. Bosch, L. Bruins, and J. H. van Dieën, “Foot positioning instruction, initial vertical load position and lifting technique: Effects on low back loading,” Ergonomics, vol. 47, no. 13, pp. 1365–1385, 2004, doi: 10.1080/00140130410001714742.
  • [26] M. A. Nussbaum and D. B. Chaffin, “Development and evaluation of a scalable and deformable geometric model of the human torso,” Clin. Biomech., vol. 11, no. 1, pp. 25–34, 1996, doi: 10.1016/0268-0033(95)00031-3.
  • [27] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 2012, doi: 10.3390/s120201437.
  • [28] T. Dutta, “Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace,” Appl. Ergon., vol. 43, no. 4, pp. 645–649, 2012, doi: 10.1016/j.apergo.2011.09.011.
  • [29] M. Christophy, N. A. F. Senan, J. C. Lotz, and O. M. O’Reilly, “A Musculoskeletal model for the lumbar spine,” Biomech. Model. Mechanobiol., vol. 11, no. 1–2, pp. 19–34, 2012, doi: 10.1007/s10237-011-0290-6.
  • [30] P. Khoddam-Khorasani, N. Arjmand, and A. Shirazi-Adl, “Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study,” J. Biomech., vol. 104, May 2020, doi: 10.1016/J.JBIOMECH.2020.109728.
  • [31] M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee, “Analysis of musculoskeletal systems in the AnyBody Modeling System,” Simul. Model. Pract. Theory, vol. 14, no. 8, pp. 1100–1111, 2006, doi: 10.1016/j.simpat.2006.09.001.
  • [32] S. L. Delp et al., “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Trans. Biomed. Eng., vol. 54, no. 11, pp. 1940–1950, 2007, doi: 10.1109/TBME.2007.901024.
  • [33] M. Senteler, B. Weisse, D. A. Rothenfluh, and J. G. Snedeker, “Intervertebral reaction force prediction using an enhanced assembly of OpenSim models,” Comput. Methods Biomech. Biomed. Engin., vol. 19, no. 5, pp. 538–548, 2016, doi: 10.1080/10255842.2015.1043906.
  • [34] M. E. Raabe and A. M. W. Chaudhari, “An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation,” J. Biomech., vol. 49, no. 7, pp. 1238–1243, 2016, doi: 10.1016/j.jbiomech.2016.02.046.
  • [35] S. R. Hamner, A. Seth, and S. L. Delp, “Muscle contributions to propulsion and support during running,” J. Biomech., vol. 43, no. 14, pp. 2709–2716, 2010, doi: 10.1016/j.jbiomech.2010.06.025.
  • [36] E. M. Arnold, S. R. Ward, R. L. Lieber, and S. L. Delp, “A model of the lower limb for analysis of human movement,” Ann. Biomed. Eng., vol. 38, no. 2, pp. 269–279, 2010, doi: 10.1007/s10439-009-9852-5.
  • [37] A. S. Koopman, I. Kingma, G. S. Faber, J. Bornmann, and J. H. van Dieën, “Estimating the L5S1 flexion/extension moment in symmetrical lifting using a simplified ambulatory measurement system,” J. Biomech., vol. 70, pp. 242–248, Mar. 2018, doi: 10.1016/J.JBIOMECH.2017.10.001.
  • [38] Z. Wang, L. Wu, J. Sun, L. He, S. Wang, and L. Yang, “Squat, stoop, or semi-squat: A comparative experiment on lifting technique,” J. Huazhong Univ. Sci. Technol. - Med. Sci., vol. 32, no. 4, pp. 630–636, 2012, doi: 10.1007/s11596-012-1009-3.
  • [39] A. Plamondon, M. Gagnon, and D. Gravel, “Moments at the L5/S1 joint during asymmetrical lifting: effects of different load trajectories and initial load positions,” Clin. Biomech., vol. 10, no. 3, pp. 128–136, 1995, doi: 10.1016/0268-0033(95)93702-U.
  • [40] P. Dolan, I. Kingma, M. P. De Looze, J. H. Van Dieen, and H. M. Toussaint, “<Emg_Coluna_Levantamento.Pdf>,” vol. 1, no. 1, pp. 17–24, 2001.
  • [41] A. Seth et al., “OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement,” PLoS Comput. Biol., vol. 14, no. 7, Jul. 2018, doi: 10.1371/journal.pcbi.1006223.
  • [42] T. W. Lu and J. J. O’Connor, “Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints,” J. Biomech., vol. 32, no. 2, pp. 129–134, 1999, doi: 10.1016/S0021-9290(98)00158-4.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Sayı
Yazarlar

Melih Canlıdinç 0000-0002-4011-9490

Mustafa Güleşen 0000-0001-8781-2746

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Canlıdinç, M., & Güleşen, M. (2022). BİYOMEKANİK ANALİZDE YÜK KALDIRMA HAREKETİ YAKALAMA YÖNTEMLERİ VE ÖRNEK UYGULAMA. Kirklareli University Journal of Engineering and Science, 8(1), 122-135. https://doi.org/10.34186/klujes.1128113