Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Temperature-Sensitive Hyaluronic Acid Hydrogels Containing Flaxseed Mucilage

Yıl 2025, Cilt: 11 Sayı: 2, 240 - 252, 31.12.2025
https://doi.org/10.34186/klujes.1686769

Öz

Hydrogels are cross-linked polymeric structures synthesized through the reaction of one or more monomers. Depending on their monomer sources, hydrogels can be natural or synthetic polymeric materials. Hydrogels prepared from natural biopolymers are used in the medical field due to their biocompatibility, biodegradability, low toxicity, high flexibility resembling natural tissue characteristics, and ease of modification. Natural biopolymers can be carbohydrates, proteins, or mucilages derived from animal, plant, or waste sources. Plant-based biopolymers (mucilage) are preferred as hydrogel components because they are non-toxic, low-cost, non-irritating, and act as natural softening agents.

Hyaluronic acid is widely used in cosmetic products, wound healing drugs, tissue regeneration and treatment, as well as various medical (implant) applications
In this study, hyaluronic acid hydrogels were synthesized using flaxseed mucilage, selected as the natural biopolymer component, and the temperature-sensitive monomer poly(N-isopropylacrylamide) (PNIPAM). By incorporating flaxseed mucilage as a natural component, the elasticity of temperature-sensitive hyaluronic acid hydrogels was enhanced, thereby increasing their potential for medical applications.

Proje Numarası

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (22937)

Kaynakça

  • Agnihotri, S.A., & Aminabhavi, T.M. (2006). Novel interpenetrating network chitosan- poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. International Journal of Pharmaceutics, 324(2):103-115. doi: 10.1016/j.pharm.2006.05.061.
  • Ahmad S., Ahmad, M., Manzoor, K., Purwar, R., & Ikram, S. (2019). A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules, 136, 870–890. doi:10.1016/j.ijbiomac.2019.06.113.
  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2): 105-121 Doi:10.1016/j.jare.2013.07.006
  • Ansari, M., J., Rajendran, R.R., Mohanto, S., Panda, U.A.K., Dhotre, K., Manne, R., Deepak, A., Zafar, A., Yasir, M., Pramanik, S. (2022). Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art. Gels, 8: 454-499. doi:10.3390/gels8070454.
  • Atoufi, Z., Kamrava, S., K., Davachi, S., M., Hassanabadi, M., Garakani, S., S., Alizadeh, R., Farhadi, M., Tavakol, S., Bagher, Z., Motlagh, G., H. (2019). Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International Journal of Biological Macromolecules, 139:1168–1181. doi:10.1016/j.ijbiomac.2019.08.101.
  • Balan, K., E., Boztepe, C., Künkül, A. (2022). Modeling the effect of physical crosslinking degree of pH and temperature responsive poly(NIPAAm-co-VSA)/alginate IPN hydrogels on drug release behavior. Journal of Drug Delivery Science and Technology, 75:103671. doi:10.1016/j.jddst.2022.103671.
  • Borzacchiello, A., Ambrosio L. (2009). Structure-property relationships in hydrogels, Hydrogels, Springer, 9-20 pp. Brahima, S., Boztepe, C., Kunkul, A., Yuceer, M. (2017). Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Materials Science and Engineering C, 7(5): 425–432. doi:10.1016/j.msec.2017.02.081.
  • Bukhari, S. N. A., Roswandi, N. L., Waqas, M., Habib, H., Hussain, F., Khan, S., Sohail, M., Ramli, N. A., Thu, H. E., & Hussain, Z. (2018). Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. International Journal of Biological Macromolecules, 120:1682–1695. doi:10.10167j.ijbiomac.2018.09.188.
  • Chen, H. H., Xu, S. Y., Wang, Z. (2006). Gelation properties of flaxseed gum. Journal of Food Engineering, 77(2):295–303. doi:10.1016/j.jfoodeng.2005.06.033
  • Chen, G., Ma, F., Li, J., Yang, P., Wang, Y., Li, Z., Meng, Y. (2024). Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. International Journal of Biological Macromolecules, 268 :131735. doi:10.1016/j.ijbiomac.2024.131735
  • Cui L., Jia, J., Guo, Y., Liu, Y., Zhu, P. (2014). Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers, 99:31-38. Doi:10.1016/j.carpol.2013.08.048
  • Dragan, S.D. (2014). Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 243:572-590. doi:10.1016/j.cej.2014.01.065
  • El-Husseiny, H., M., Mady, E., A., Hamabe L., Abugomaa, A, Shimada K., Yoshida, T., Tanaka, T., Yokoi, A., Elbadawy, M., Tanaka, R. (2022). Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 13: 100186. doi:10.1016/j.mtbio.2021.100186.
  • Fan, R., Cheng, Y., Wang, R., Zhang, T., Zhang, H., Li, J., Song, S., Zheng, A. (2022). Thermosensitive hydrogels and advances in their applicationin disease therapy. Polymers, 14: 2379-2400. doi:10.3390/polym14122379.
  • George, B., & Suchithra T.V. (2019). Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia, 137:104241. doi:10.1016/j.fitote.2019.104241
  • Goyal, A., Sharma, V., Upadhyay, N., Gill, S., Sihag, M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, 51(9):1633–1653. doi:10.1007/s13197-013-1247-9.
  • Hacker, M., C., Nawaz, H., A. (2015). Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. International Journal of Molecular Science, 16(11): 27677–27706. doi:10.3390/ijms161126056.
  • Haseeb, M., T., Muhammad, G., Hussain, M., A., Bukhari, S., N., A., Sheikh, F., A. (2024). Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli–responsive functional biomaterial for pharmaceuticals and healthcare. International Journal of Biological Macromolecules. 278: 134817. doi:10.1016/j.ijbiomac.2024.134817.
  • Haq, M., A., Su, Y.,Wang, D. (2017). Mechanical properties of PNIPAM based hydrogels: A review. Materials Science and Engineering C, 70: 842–855. doi:10.1016/j.msec.2016.09.081.
  • Hilmi, B., Hamid, A., Akil, H., Yahay, B., H. (2016). The characteristics of the smart polymer as temperature or pH responsive hydrogel. Procedia Chemistry, 19:406–409. doi:10.1016/j.proche.2016.03.031.
  • Hosseini, M., S., & Nabid, M., R. (2020). Synthesis of chemically cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug delivery applications. International Journal of Biological Macromolecules, 163:336–347. doi:10.1016/j.ijbiomac.2020.06.252.
  • Huang, J., Wang, X., Yu, X. (2006). Solute permeation through the polyurethane- NIPAAm hydrogel membranes with various cross-linking densities. Desalination, 192: 125– 131. doi:10.1016/j.desal.2005.04.133.
  • Kaur, M., Kaur, R., Punia, S. (2018). Characterization of mucilages extracted from different flaxseed (Linumusitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. International Journal of Biological Macromolecules, 117:919–927. doi:10.1016/ j.ijbiomac.2018.06.010.
  • Klouda, L., & Mikos, A., G. (2008). Termoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68:34-45. doi:10.1016/j.ejpb.2007.02.025.
  • Lavrador, P., Esteves, M.R., Gaspar, V.M., Mano, J.F. (2021). Stimuli-responsive nanocomposite hydrogels for biomedical applications. Advanced Functional Materials, 31(8): 2005941. doi:10.1002/adfm.202005941.
  • Lavrador, P., Gaspar, V.M., Mano, J.F. (2018). Stimuli-responsive nanocarriers for delivery of bone therapeutics - barriers and progresses. Journal of. Controlled Release, 273: 51–67. doi:10.1016/j.jconrel.2018.01.021.
  • Lee, J.H. (2018). Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterial Research, 22(1):1–14. doi:10.1186/s40824-018-0138-6.
  • Lee, K.Y., & Mooney, D.J. (2001). Hydrogels for tissue engineering. Chemical. Reviews, 101(7):1869–1880. doi:10.1021/cr000108x.
  • Li, P., Xua, K., Tan, Y., Lu, C., Li, Y., Wang, P. (2013). A novel fabrication method of temperature-responsive poly(acrylamide) composite hydrogel with high mechanical strength. Polymer, 54: 5830-5838. doi:10.1016/j.polymer.2013.08.019.
  • Liu, J., Yin, Y. (2015). Temperature responsive hydrogels: construction and applications, Polymer Science, 1(13):1–6. doi:10.21767/2471-9935.100003.
  • Liu, Z., Zhang, S., Gao, C., Meng, X., Wang, S., Kong, F. (2022). Temperature/ pH-Responsive Carboxymethyl Cellulose/ Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems. Polymers, 14: 1578. doi: 10.3390/polym14081578.
  • Liu, L., Liu, H., Wang, R., Zhou, J., Zhao, L., Li, Q., Liu, Z. (2024). Preparation and application of environmentally-responsive hydrogels in tissue engineering. Materials Today Communications, 40: 109493. doi:10.1016/j.mtcomm.2024.109493.
  • Mahinroosta, M., Farsangi, Z.J., Allahverdi, A., Shakoori, Z. (2018). Hydrogels a intelligent materials: A brief review of synthesis, properties and applications, Materials Today Chemistry, 8:42-55. Doi:10.1016/j.mtchem.2018.02.004
  • Maitra, J., & Shukla, V.K. (2014). Cross-linking in Hydrogels - A Review, American Journal of Polymer Science, 4(2): 25-31. doi:10.5923/j.ajps.20140402.01.
  • Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M., Tran, S.D. (2019). Smart hydrogels in tissue engineering and regenerative medicine. Material (Basel), 12(20): 3323. doi:10.3390/ ma12203323.
  • Mihajlovic M., Fermin, M., M., L., Ito, K., Nostrum, C., F., Vermonden, T. (2021). Hyaluronic acid-based supramolecular hydrogels for biomedical Applications. Multifunctional Materials, 4(3): 03200. doi:10.1088/ 2399-7532/ac1c8a.
  • Papakonstantinou, E., Roth, M., Karakiulakis, G. (2012). Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology, 4(3):37–41. doi:10.4161/derm.21923.
  • Pérez, L., A., Hernández, R., Alonso, J., M., Pérez-González, R., Sáez-Martínez, V. (2021). Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines, 9:1113-1134. doi:10.3390/biomedicines9091113.
  • Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P. (2013). Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymers, 92(2): 1685–1699. doi:10.1016/j.carbpol.2012.11.021.
  • Puligundla, P., & Lim, S. (2022). A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods, 11:1677-1697. doi:10.3390/foods11121677.
  • Ramteke, S., Haigune, N., More, S., Pise, S., Pise, A., Kharwade, R. (2022). Flaxseed Mucilage Hydrogel based Floating Drug Delivery System: Design and Evaluation. Research Journal of Pharmacology. and Technology, 15(4):1549- 1554. doi:10.52711/0974-360X.2022.00258.
  • Rashid, F., Ahmed, Z., Hussain, S., Huang, J. Y., Ahmad, A. (2019). Linum usitatissimum L. seeds: Flax gum extraction, physicochemical and functional characterization. Carbohydrate Polymers, 215:29–38. doi:10.1016/j.carpol.2019.03.054.
  • Rasiba, S., Z., M., Akil, H., Yahya, A., S. (2016). Effect of Different Composition on Particle Size Chitosan-PMAA-PNIPAM Hydrogel. Procedia Chemistry, 19:388–39. doi:10.1016/j.proche.2016.03.028
  • Ullah, F., Othman, M.,B.,H., Javed, F., Ahmad, Z., Akil, H. (2015). Classification, processing and application of hydrogels: A review. Materials Sciences and Engineering: C, 57:414-443. doi:10.1016/j.msec.2015.07.053.
  • Varshosaz, J., & Falamarzian, M. (2001). Drug diffusion mechanism through pH- sensitive hydrophobic/polyelectrolyte hydrogel membranes. European Journal of Pharmaceutics and Biopharmaceutics, 51(3):235-240. doi:10.1016/S0939-6411(01)00126-6
  • Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., Hirvonen, J. (2005). Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 26(16): 3055–3064. doi:10.1016/j.biomaterials.2004.09.008.
  • Warrena, H., Shepherda, D., J., Panhuisa, M., Officera, D., L., Spinks, G., M. (2020). Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation. Sensors and Actuators A, 301: 111784. doi:10.1016/j.sna.2019.111784.
  • Wu, S., Liua, X., Miller II, L., A., Cheng, Y., Yeh, M., Lu, L. (2018). Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydrate Polymers, 192:308–316. doi: 10.1016/j.carpol.2018.03.047.
  • Zhao, W., Jin, X., Cong, Y., Liud, Y. and Fue, J. (2012). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 88(3):327-339. doi:10.1002/jctb.3970.
  • Zhu, J., & Marchant, R.E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices., 8(5): 607–626. doi:10.1586/erd.11.27.
  • Ziolkovska, A. (2012). Laws of flaxseed mucilage extraction. Food Hydrocolloids, 26(1):197– 204. doi:10.1016/j.foodhyd.2011.04.022.

Keten Tohumu Müsilajı İçeren Sıcaklık Duyarlı Hyaluronik Asit Hidrojellerinin Sentezi

Yıl 2025, Cilt: 11 Sayı: 2, 240 - 252, 31.12.2025
https://doi.org/10.34186/klujes.1686769

Öz

Hidrojeller, bir veya daha fazla monomerin reaksiyonu ile sentezlenen çapraz bağlı polimerik yapılardır. Hidrojeller monomer kaynaklarına göre doğal ve sentetik polimerik malzemelerdir. Doğal biyopolimerlerden hazırlanan hidrojeller; biyolojik olarak uyumlu olmaları, biyolojik olarak parçalanabilir olmaları, düşük toksisiteye sahip olmaları, karakteristik dokuya benzer şekilde yüksek derecede esnekliğe sahip olmaları ve modifikasyonlarının kolay olmasından dolayı medikal alanda kullanılmaktadırlar. Doğala biyopolimerler hayvansal, bitkisel ya da atıklardan elde edilen karbohidrat, protein ya da müsilajlar olabilir. Hidrojel bileşeni olarak bitki bazlı biyopolimer (müsilaj) toksik olmaması, düşük maliyeti, yumuşatıcı ve tahriş edici olmaması nedeniyle tercih edilir. Hyaluronik asit; kozmetik ürünlerin üretiminde, yara için ilaçların üretiminde, doku rejenerasyonunda ve tedavisinde ve bir çok medikal (implant) kullanım alanı mevcuttur Bu çalışmada doğal biyopolimer bileşeni olarak seçilen Keten tohumu müsilajı ve sıcaklık duyarlı monomer poli (N- izopropilakrilamid) PNIPAM ile Hyaluronik asit hidrojelinin sentezi gerçekleştirildi. Doğal bileşeni keten tohumu müsilajı olan sıcaklık duyarlı hyaluronik asit hidrojellerinin elastikiyetini artırarak medikal kullanım olanakları arttırılmıştır.

Etik Beyan

Etik izne tabi bir çalışma değildir

Destekleyen Kurum

Ege Üniversitesi

Proje Numarası

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (22937)

Teşekkür

Yüksek Biyokimyager Hüseyin Özay’a ve Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (22937) teşekkür ederiz.

Kaynakça

  • Agnihotri, S.A., & Aminabhavi, T.M. (2006). Novel interpenetrating network chitosan- poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. International Journal of Pharmaceutics, 324(2):103-115. doi: 10.1016/j.pharm.2006.05.061.
  • Ahmad S., Ahmad, M., Manzoor, K., Purwar, R., & Ikram, S. (2019). A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules, 136, 870–890. doi:10.1016/j.ijbiomac.2019.06.113.
  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2): 105-121 Doi:10.1016/j.jare.2013.07.006
  • Ansari, M., J., Rajendran, R.R., Mohanto, S., Panda, U.A.K., Dhotre, K., Manne, R., Deepak, A., Zafar, A., Yasir, M., Pramanik, S. (2022). Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art. Gels, 8: 454-499. doi:10.3390/gels8070454.
  • Atoufi, Z., Kamrava, S., K., Davachi, S., M., Hassanabadi, M., Garakani, S., S., Alizadeh, R., Farhadi, M., Tavakol, S., Bagher, Z., Motlagh, G., H. (2019). Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. International Journal of Biological Macromolecules, 139:1168–1181. doi:10.1016/j.ijbiomac.2019.08.101.
  • Balan, K., E., Boztepe, C., Künkül, A. (2022). Modeling the effect of physical crosslinking degree of pH and temperature responsive poly(NIPAAm-co-VSA)/alginate IPN hydrogels on drug release behavior. Journal of Drug Delivery Science and Technology, 75:103671. doi:10.1016/j.jddst.2022.103671.
  • Borzacchiello, A., Ambrosio L. (2009). Structure-property relationships in hydrogels, Hydrogels, Springer, 9-20 pp. Brahima, S., Boztepe, C., Kunkul, A., Yuceer, M. (2017). Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Materials Science and Engineering C, 7(5): 425–432. doi:10.1016/j.msec.2017.02.081.
  • Bukhari, S. N. A., Roswandi, N. L., Waqas, M., Habib, H., Hussain, F., Khan, S., Sohail, M., Ramli, N. A., Thu, H. E., & Hussain, Z. (2018). Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. International Journal of Biological Macromolecules, 120:1682–1695. doi:10.10167j.ijbiomac.2018.09.188.
  • Chen, H. H., Xu, S. Y., Wang, Z. (2006). Gelation properties of flaxseed gum. Journal of Food Engineering, 77(2):295–303. doi:10.1016/j.jfoodeng.2005.06.033
  • Chen, G., Ma, F., Li, J., Yang, P., Wang, Y., Li, Z., Meng, Y. (2024). Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. International Journal of Biological Macromolecules, 268 :131735. doi:10.1016/j.ijbiomac.2024.131735
  • Cui L., Jia, J., Guo, Y., Liu, Y., Zhu, P. (2014). Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers, 99:31-38. Doi:10.1016/j.carpol.2013.08.048
  • Dragan, S.D. (2014). Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 243:572-590. doi:10.1016/j.cej.2014.01.065
  • El-Husseiny, H., M., Mady, E., A., Hamabe L., Abugomaa, A, Shimada K., Yoshida, T., Tanaka, T., Yokoi, A., Elbadawy, M., Tanaka, R. (2022). Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 13: 100186. doi:10.1016/j.mtbio.2021.100186.
  • Fan, R., Cheng, Y., Wang, R., Zhang, T., Zhang, H., Li, J., Song, S., Zheng, A. (2022). Thermosensitive hydrogels and advances in their applicationin disease therapy. Polymers, 14: 2379-2400. doi:10.3390/polym14122379.
  • George, B., & Suchithra T.V. (2019). Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia, 137:104241. doi:10.1016/j.fitote.2019.104241
  • Goyal, A., Sharma, V., Upadhyay, N., Gill, S., Sihag, M. (2014). Flax and flaxseed oil: an ancient medicine & modern functional food. Journal of Food Science and Technology, 51(9):1633–1653. doi:10.1007/s13197-013-1247-9.
  • Hacker, M., C., Nawaz, H., A. (2015). Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. International Journal of Molecular Science, 16(11): 27677–27706. doi:10.3390/ijms161126056.
  • Haseeb, M., T., Muhammad, G., Hussain, M., A., Bukhari, S., N., A., Sheikh, F., A. (2024). Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli–responsive functional biomaterial for pharmaceuticals and healthcare. International Journal of Biological Macromolecules. 278: 134817. doi:10.1016/j.ijbiomac.2024.134817.
  • Haq, M., A., Su, Y.,Wang, D. (2017). Mechanical properties of PNIPAM based hydrogels: A review. Materials Science and Engineering C, 70: 842–855. doi:10.1016/j.msec.2016.09.081.
  • Hilmi, B., Hamid, A., Akil, H., Yahay, B., H. (2016). The characteristics of the smart polymer as temperature or pH responsive hydrogel. Procedia Chemistry, 19:406–409. doi:10.1016/j.proche.2016.03.031.
  • Hosseini, M., S., & Nabid, M., R. (2020). Synthesis of chemically cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug delivery applications. International Journal of Biological Macromolecules, 163:336–347. doi:10.1016/j.ijbiomac.2020.06.252.
  • Huang, J., Wang, X., Yu, X. (2006). Solute permeation through the polyurethane- NIPAAm hydrogel membranes with various cross-linking densities. Desalination, 192: 125– 131. doi:10.1016/j.desal.2005.04.133.
  • Kaur, M., Kaur, R., Punia, S. (2018). Characterization of mucilages extracted from different flaxseed (Linumusitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. International Journal of Biological Macromolecules, 117:919–927. doi:10.1016/ j.ijbiomac.2018.06.010.
  • Klouda, L., & Mikos, A., G. (2008). Termoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68:34-45. doi:10.1016/j.ejpb.2007.02.025.
  • Lavrador, P., Esteves, M.R., Gaspar, V.M., Mano, J.F. (2021). Stimuli-responsive nanocomposite hydrogels for biomedical applications. Advanced Functional Materials, 31(8): 2005941. doi:10.1002/adfm.202005941.
  • Lavrador, P., Gaspar, V.M., Mano, J.F. (2018). Stimuli-responsive nanocarriers for delivery of bone therapeutics - barriers and progresses. Journal of. Controlled Release, 273: 51–67. doi:10.1016/j.jconrel.2018.01.021.
  • Lee, J.H. (2018). Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomaterial Research, 22(1):1–14. doi:10.1186/s40824-018-0138-6.
  • Lee, K.Y., & Mooney, D.J. (2001). Hydrogels for tissue engineering. Chemical. Reviews, 101(7):1869–1880. doi:10.1021/cr000108x.
  • Li, P., Xua, K., Tan, Y., Lu, C., Li, Y., Wang, P. (2013). A novel fabrication method of temperature-responsive poly(acrylamide) composite hydrogel with high mechanical strength. Polymer, 54: 5830-5838. doi:10.1016/j.polymer.2013.08.019.
  • Liu, J., Yin, Y. (2015). Temperature responsive hydrogels: construction and applications, Polymer Science, 1(13):1–6. doi:10.21767/2471-9935.100003.
  • Liu, Z., Zhang, S., Gao, C., Meng, X., Wang, S., Kong, F. (2022). Temperature/ pH-Responsive Carboxymethyl Cellulose/ Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems. Polymers, 14: 1578. doi: 10.3390/polym14081578.
  • Liu, L., Liu, H., Wang, R., Zhou, J., Zhao, L., Li, Q., Liu, Z. (2024). Preparation and application of environmentally-responsive hydrogels in tissue engineering. Materials Today Communications, 40: 109493. doi:10.1016/j.mtcomm.2024.109493.
  • Mahinroosta, M., Farsangi, Z.J., Allahverdi, A., Shakoori, Z. (2018). Hydrogels a intelligent materials: A brief review of synthesis, properties and applications, Materials Today Chemistry, 8:42-55. Doi:10.1016/j.mtchem.2018.02.004
  • Maitra, J., & Shukla, V.K. (2014). Cross-linking in Hydrogels - A Review, American Journal of Polymer Science, 4(2): 25-31. doi:10.5923/j.ajps.20140402.01.
  • Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M., Tran, S.D. (2019). Smart hydrogels in tissue engineering and regenerative medicine. Material (Basel), 12(20): 3323. doi:10.3390/ ma12203323.
  • Mihajlovic M., Fermin, M., M., L., Ito, K., Nostrum, C., F., Vermonden, T. (2021). Hyaluronic acid-based supramolecular hydrogels for biomedical Applications. Multifunctional Materials, 4(3): 03200. doi:10.1088/ 2399-7532/ac1c8a.
  • Papakonstantinou, E., Roth, M., Karakiulakis, G. (2012). Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology, 4(3):37–41. doi:10.4161/derm.21923.
  • Pérez, L., A., Hernández, R., Alonso, J., M., Pérez-González, R., Sáez-Martínez, V. (2021). Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines, 9:1113-1134. doi:10.3390/biomedicines9091113.
  • Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P. (2013). Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymers, 92(2): 1685–1699. doi:10.1016/j.carbpol.2012.11.021.
  • Puligundla, P., & Lim, S. (2022). A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods, 11:1677-1697. doi:10.3390/foods11121677.
  • Ramteke, S., Haigune, N., More, S., Pise, S., Pise, A., Kharwade, R. (2022). Flaxseed Mucilage Hydrogel based Floating Drug Delivery System: Design and Evaluation. Research Journal of Pharmacology. and Technology, 15(4):1549- 1554. doi:10.52711/0974-360X.2022.00258.
  • Rashid, F., Ahmed, Z., Hussain, S., Huang, J. Y., Ahmad, A. (2019). Linum usitatissimum L. seeds: Flax gum extraction, physicochemical and functional characterization. Carbohydrate Polymers, 215:29–38. doi:10.1016/j.carpol.2019.03.054.
  • Rasiba, S., Z., M., Akil, H., Yahya, A., S. (2016). Effect of Different Composition on Particle Size Chitosan-PMAA-PNIPAM Hydrogel. Procedia Chemistry, 19:388–39. doi:10.1016/j.proche.2016.03.028
  • Ullah, F., Othman, M.,B.,H., Javed, F., Ahmad, Z., Akil, H. (2015). Classification, processing and application of hydrogels: A review. Materials Sciences and Engineering: C, 57:414-443. doi:10.1016/j.msec.2015.07.053.
  • Varshosaz, J., & Falamarzian, M. (2001). Drug diffusion mechanism through pH- sensitive hydrophobic/polyelectrolyte hydrogel membranes. European Journal of Pharmaceutics and Biopharmaceutics, 51(3):235-240. doi:10.1016/S0939-6411(01)00126-6
  • Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., Hirvonen, J. (2005). Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 26(16): 3055–3064. doi:10.1016/j.biomaterials.2004.09.008.
  • Warrena, H., Shepherda, D., J., Panhuisa, M., Officera, D., L., Spinks, G., M. (2020). Porous PNIPAm hydrogels: Overcoming diffusion-governed hydrogel actuation. Sensors and Actuators A, 301: 111784. doi:10.1016/j.sna.2019.111784.
  • Wu, S., Liua, X., Miller II, L., A., Cheng, Y., Yeh, M., Lu, L. (2018). Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydrate Polymers, 192:308–316. doi: 10.1016/j.carpol.2018.03.047.
  • Zhao, W., Jin, X., Cong, Y., Liud, Y. and Fue, J. (2012). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 88(3):327-339. doi:10.1002/jctb.3970.
  • Zhu, J., & Marchant, R.E. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices., 8(5): 607–626. doi:10.1586/erd.11.27.
  • Ziolkovska, A. (2012). Laws of flaxseed mucilage extraction. Food Hydrocolloids, 26(1):197– 204. doi:10.1016/j.foodhyd.2011.04.022.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimerizasyon Mekanizmaları, Polimer Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Halide Ceren Hazavitligil Bu kişi benim 0009-0008-8619-9773

Burcu Okutucu 0000-0002-0907-4175

Proje Numarası Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (22937)
Gönderilme Tarihi 30 Nisan 2025
Kabul Tarihi 30 Eylül 2025
Erken Görünüm Tarihi 13 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Hazavitligil, H. C., & Okutucu, B. (2025). Keten Tohumu Müsilajı İçeren Sıcaklık Duyarlı Hyaluronik Asit Hidrojellerinin Sentezi. Kirklareli University Journal of Engineering and Science, 11(2), 240-252. https://doi.org/10.34186/klujes.1686769