Araştırma Makalesi
BibTex RIS Kaynak Göster

ASSESSMENT OF TEMPORAL VARIATIONS OF GROUNDWATER RECHARGE IN ERGENE BASIN (NORTHWESTERN TURKEY) IN TERMS OF CLIMATE CHANGE

Yıl 2020, , 95 - 118, 31.12.2020
https://doi.org/10.34186/klujes.771456

Öz

Recharge of groundwater is important for the sustainability of this resource. Groundwater in Ergene Basin is used for domestic purposes, irrigation and industrial demand. In this study, it is aimed to determine the temporal variations of groundwater recharge in Ergene Basin. For this purpose data of main meteorological stations located the basin in 1966 - 2014 were used. The study area is divided into two zones, eastern zone (EZ) and western zone (WZ). Groundwater recharge, which is calculated using hydrologic budget method, showed a decreasing trend in EZ while very slightly increasing trend in WZ consistent with the decreasing precipitation and increasing temperature trends. Increasing demand for groundwater and over pumping in EZ of the Basin caused significant groundwater declines with combined effect of climate change. According to Standardized Precipitation Index (SPI) values the study area also experienced moderate-mild draught during the study periods.

Destekleyen Kurum

Yok

Proje Numarası

Proje kapsamında değil

Teşekkür

This research received no funding from any institution. Author would like to thank State Hydraulic Works and General Directorate of State Meteorological Service for allowing access to their data and Mustafa ŞİRİN for proof reading of the manuscript.

Kaynakça

  • [1] Yagbasan, O., Impacts of climate change on groundwater recharge in Küçük Menderes River Basin in Western Turkey. Geodinamica Acta, 28(3), 209–222. https://doi.org/10.1080/09853111.2015.1121802 , 2016.
  • [2] Shahid, S., Wang, X.-J., Rahman, M.M., Hasan, R., Harun, S.B., Shamsudin, S., , Spatial assessment of groundwater over-exploitation in northwestern districts of Bangladesh. J. Geol. Soc. India 85, 463–470. http://dx.doi.org/10.1007/s12594-015-0238-z., 2015.
  • [3] Xu, Y., Beekman, H. E., Review: Groundwater recharge estimation in arid and semi-arid southern Africa. Hydrogeology Journal, 27(3), 929–943. https://doi.org/10.1007/s10040-018-1898-8 2018.
  • [4] Salem, G. S. A., Kazama, S., Shahid, S., Dey, N. C., Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agricultural Water Management, 208, 33–42. https://doi.org/10.1016/j.agwat.2018.06.011 , 2018.
  • [5] Van Engelenburg, J., Hueting, R., Rijpkema, S., Teuling, A. J., Uijlenhoet, R., Ludwig, F., Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water Resources Management, 32(1), 259-272. https://doi.org/10.1007/s11269-017-1808-1 , 2017.
  • [6] Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., Aureli, A., Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. https://doi.org/10.1016/j.jhydrol.2011.05.002 , 2011.
  • [7] Guermazi, E., Milano, M., Reynard, E., Zairi, M., Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitigation and Adaptation Strategies for Global Change, 24(1), 73-92. https://doi.org/10.1007/s11027-018-9797-9 , 2018.
  • [8] Shahid, S., Wang, X.-J., Harun, S.B., Shamsudin, S.B., Ismail, T., Minhans, A., Climate variability and changes in the major cities of Bangladesh: observations, possible impacts and adaptation. Reg. Environ. Change 16, 459–471. http://dx.doi.org/10.1007/s10113-015-0757-6. 2016.
  • [9] Holman, I. P., Climate change impacts on groundwater recharge- uncertainty, shortcomings, and the way forward? Hydrogeology Journal, 14(5), 637-647. https://doi.org/10.1007/s10040-005-0467-0 , 2005.
  • [10] Intergovernmental Panel on Climate Change. Climate change 1995, impacts, adaptations and mitigation of climate change: Scientific-technical analyses. London: Cambridge University Press., 1996.
  • [11] Ferguson, G., Gleeson, T., Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2(5), 342-345. https://doi.org/10.1038/nclimate1413 , 2012.
  • [12] Döll, P., Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006 , 2009.
  • [13] Jyrkama, M. I., Sykes, J. F., The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. https://doi.org/10.1016/j.jhydrol.2007.02.036 , 2007.
  • [14] Intergovernmental Panel on Climate Change . Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: Synthesis report. Cambridge: Cambridge University Press. pp. 19-91, 2007.
  • [15] Şen, Ö. L., A holistic view of climate change and its impacts in Turkey. İstanbul: Istanbul Policy Center, Sabancı University, Stiftung Mercator Initiative. ISBN 978-605-4348-65-7.2013.
  • [16] USGS Effects of climate variability and change on groundwater resources in the United States. US Geological Survey, Fact Sheet, 3074, 4p. 2009.
  • [17] Arkoc, O., Assessment of water quality of east part of the Ergene Basin, Turkey. Journal of Environmental Protection and Ecology, 12(4), 1644-1655.2011.
  • [18] Strack, M., Waddington, J. M., Tuittila, E. (2004). Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochemical Cycles, 18(4). https://doi.org/10.1029/2003gb002209 , 2004.
  • [19] Ise, T., Dunn, A. L., Wofsy, S. C., Moorcroft, P. R., High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1(11), 763-766. https://doi.org/10.1038/ngeo331 , 2008.
  • [20] Zhu, J., Sun, G., Li, W., Zhang, Y., Miao, G., Noormets, A., Wang, X., Modeling the potential impacts of climate change on the hydrology of selected forested wetlands in the southeastern United States. https://doi.org/10.5194/hess-2017-215-supplement , 2017.
  • [21] General Directorate of Mineral Resourses (MTA) Earth Sciences Portal Retrieved from http://yerbilimleri.mta.gov.tr accessed in 2019, June15
  • [22] Thornthwaite, C.W., and J.R. Mather.(1957) Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology 10(3), 311 pp. , 1957.
  • [23] Thiessen, A. H., Precipitation averages for large areas. Monthly weather review, 39(7), 1082-1089.1911.
  • [24] Novák, V., Evapotranspiration: A component of the water cycle. Evapotranspiration in the Soil-Plant-Atmosphere System, 1-13. https://doi.org/10.1007/978-94-007-3840-9_1, 2009. [25] Swenson, S., Wahr, J., Monitoring the water balance of Lake Victoria, East Africa, from space. Journal of Hydrology, 370(1-4), 163-176. https://doi.org/10.1016/j.jhydrol.2009.03.008, 2009.
  • [26] Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31(11), https://doi.org/10.1029/2004gl019779 , 2004.
  • [27] Data portal for GRACE by the University of Colorado Boulder, Retrieved from http://geoid.colorado.edu/grace/dataportal.html, accessed in 2020, June15.
  • [28] McKee, T. B., Doesken, N. J., Kleist, J., The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).1993.
  • [29] Ali, M., Mubarak, S. (2017). Approaches and methods of quantifying natural groundwater recharge – A review. Asian Journal of Environment & Ecology, 5(1), 1-27. https://doi.org/10.9734/ajee/2017/36987 , 2017.
  • [30] Freeze, R. A., Cherry, J. A., Groundwater. Englewood Cliffs, NJ: Prentice-Hall. 1979.
  • [31] Allison, G. B., Estimation of groundwater discharge and recharge with special reference to arid areas. In Proceedings of the International Conference on Groundwater Systems Under Stress (pp. 231-238). 1987.
  • [32] De Silva, C. S., Rushton, K. R., Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrological Sciences Journal, 52(5), 1051-1067. https://doi.org/10.1623/hysj.52.5.1051. 2007.
  • [33] Baalousha, H. M., Barth, N., Ramasomanana, F. H., Ahzi, S., Groundwater recharge estimation and its spatial distribution in arid regions using GIS: A case study from Qatar Karst aquifer. Modeling Earth Systems and Environment, 4(4), 1319-1329. https://doi.org/10.1007/s40808-018-0503-4. 2018. [34] State Hydraulic Works, Hydrogelogical report of Ergene Basin. State Hydraulic Works, Ankara. 2003.

ASSESSMENT OF TEMPORAL VARIATIONS OF GROUNDWATER RECHARGE IN ERGENE BASIN (NORTHWESTERN TURKEY) IN TERMS OF CLIMATE CHANGE

Yıl 2020, , 95 - 118, 31.12.2020
https://doi.org/10.34186/klujes.771456

Öz

Yeraltısularının sürdürülebilir olarak kullanımı için beslenme çok önemlidir. Türkiye'nin kuzey batısında yer alan Ergene . Bu çalışmada, Ergene Havzası'ndaki yeraltı suyu beslenmesinin zamansal değişiminin belirlenmesi amaçlanmıştır. Bu amaçla 1966-2014 havzada bulunan ana meteoroloji istasyonlarının verileri kullanılmıştır. Çalışma alanı çok büyük olduğu için daha gerçekçi sonuçlar elde edebilmek için Doğu ve Batı Bölge olmak üzere iki bölgeye ayrılmıştır. Hidrolojik bütçe yöntemi kullanılarak hesaplanan yeraltısuyu beslenmesi, yağış ve sıcaklık trendleri ile uyumlu olarak Batı Bölgesinde çok az bir artış eğilimi gösterirken Doğu Bölgesinde azalma eğilimi göstermiştir. Havzanın Doğu Bölgesinde ise artan su ihtiyacı, aşırı çekim ve iklim değişikliğinin birleşik etkisiyle önemli yeraltı suyu düşümleri meydana gelmiştir. Hesaplanan Standart Yağış İndeksi (SPİ) değerleri, çalışma alanında araştırma dönemleri boyunca orta-hafif kuraklık periyodu yaşandığını tespit edilmiştir.

Proje Numarası

Proje kapsamında değil

Kaynakça

  • [1] Yagbasan, O., Impacts of climate change on groundwater recharge in Küçük Menderes River Basin in Western Turkey. Geodinamica Acta, 28(3), 209–222. https://doi.org/10.1080/09853111.2015.1121802 , 2016.
  • [2] Shahid, S., Wang, X.-J., Rahman, M.M., Hasan, R., Harun, S.B., Shamsudin, S., , Spatial assessment of groundwater over-exploitation in northwestern districts of Bangladesh. J. Geol. Soc. India 85, 463–470. http://dx.doi.org/10.1007/s12594-015-0238-z., 2015.
  • [3] Xu, Y., Beekman, H. E., Review: Groundwater recharge estimation in arid and semi-arid southern Africa. Hydrogeology Journal, 27(3), 929–943. https://doi.org/10.1007/s10040-018-1898-8 2018.
  • [4] Salem, G. S. A., Kazama, S., Shahid, S., Dey, N. C., Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agricultural Water Management, 208, 33–42. https://doi.org/10.1016/j.agwat.2018.06.011 , 2018.
  • [5] Van Engelenburg, J., Hueting, R., Rijpkema, S., Teuling, A. J., Uijlenhoet, R., Ludwig, F., Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water Resources Management, 32(1), 259-272. https://doi.org/10.1007/s11269-017-1808-1 , 2017.
  • [6] Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., Aureli, A., Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. https://doi.org/10.1016/j.jhydrol.2011.05.002 , 2011.
  • [7] Guermazi, E., Milano, M., Reynard, E., Zairi, M., Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitigation and Adaptation Strategies for Global Change, 24(1), 73-92. https://doi.org/10.1007/s11027-018-9797-9 , 2018.
  • [8] Shahid, S., Wang, X.-J., Harun, S.B., Shamsudin, S.B., Ismail, T., Minhans, A., Climate variability and changes in the major cities of Bangladesh: observations, possible impacts and adaptation. Reg. Environ. Change 16, 459–471. http://dx.doi.org/10.1007/s10113-015-0757-6. 2016.
  • [9] Holman, I. P., Climate change impacts on groundwater recharge- uncertainty, shortcomings, and the way forward? Hydrogeology Journal, 14(5), 637-647. https://doi.org/10.1007/s10040-005-0467-0 , 2005.
  • [10] Intergovernmental Panel on Climate Change. Climate change 1995, impacts, adaptations and mitigation of climate change: Scientific-technical analyses. London: Cambridge University Press., 1996.
  • [11] Ferguson, G., Gleeson, T., Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2(5), 342-345. https://doi.org/10.1038/nclimate1413 , 2012.
  • [12] Döll, P., Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006 , 2009.
  • [13] Jyrkama, M. I., Sykes, J. F., The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. https://doi.org/10.1016/j.jhydrol.2007.02.036 , 2007.
  • [14] Intergovernmental Panel on Climate Change . Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: Synthesis report. Cambridge: Cambridge University Press. pp. 19-91, 2007.
  • [15] Şen, Ö. L., A holistic view of climate change and its impacts in Turkey. İstanbul: Istanbul Policy Center, Sabancı University, Stiftung Mercator Initiative. ISBN 978-605-4348-65-7.2013.
  • [16] USGS Effects of climate variability and change on groundwater resources in the United States. US Geological Survey, Fact Sheet, 3074, 4p. 2009.
  • [17] Arkoc, O., Assessment of water quality of east part of the Ergene Basin, Turkey. Journal of Environmental Protection and Ecology, 12(4), 1644-1655.2011.
  • [18] Strack, M., Waddington, J. M., Tuittila, E. (2004). Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochemical Cycles, 18(4). https://doi.org/10.1029/2003gb002209 , 2004.
  • [19] Ise, T., Dunn, A. L., Wofsy, S. C., Moorcroft, P. R., High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1(11), 763-766. https://doi.org/10.1038/ngeo331 , 2008.
  • [20] Zhu, J., Sun, G., Li, W., Zhang, Y., Miao, G., Noormets, A., Wang, X., Modeling the potential impacts of climate change on the hydrology of selected forested wetlands in the southeastern United States. https://doi.org/10.5194/hess-2017-215-supplement , 2017.
  • [21] General Directorate of Mineral Resourses (MTA) Earth Sciences Portal Retrieved from http://yerbilimleri.mta.gov.tr accessed in 2019, June15
  • [22] Thornthwaite, C.W., and J.R. Mather.(1957) Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology 10(3), 311 pp. , 1957.
  • [23] Thiessen, A. H., Precipitation averages for large areas. Monthly weather review, 39(7), 1082-1089.1911.
  • [24] Novák, V., Evapotranspiration: A component of the water cycle. Evapotranspiration in the Soil-Plant-Atmosphere System, 1-13. https://doi.org/10.1007/978-94-007-3840-9_1, 2009. [25] Swenson, S., Wahr, J., Monitoring the water balance of Lake Victoria, East Africa, from space. Journal of Hydrology, 370(1-4), 163-176. https://doi.org/10.1016/j.jhydrol.2009.03.008, 2009.
  • [26] Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31(11), https://doi.org/10.1029/2004gl019779 , 2004.
  • [27] Data portal for GRACE by the University of Colorado Boulder, Retrieved from http://geoid.colorado.edu/grace/dataportal.html, accessed in 2020, June15.
  • [28] McKee, T. B., Doesken, N. J., Kleist, J., The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).1993.
  • [29] Ali, M., Mubarak, S. (2017). Approaches and methods of quantifying natural groundwater recharge – A review. Asian Journal of Environment & Ecology, 5(1), 1-27. https://doi.org/10.9734/ajee/2017/36987 , 2017.
  • [30] Freeze, R. A., Cherry, J. A., Groundwater. Englewood Cliffs, NJ: Prentice-Hall. 1979.
  • [31] Allison, G. B., Estimation of groundwater discharge and recharge with special reference to arid areas. In Proceedings of the International Conference on Groundwater Systems Under Stress (pp. 231-238). 1987.
  • [32] De Silva, C. S., Rushton, K. R., Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrological Sciences Journal, 52(5), 1051-1067. https://doi.org/10.1623/hysj.52.5.1051. 2007.
  • [33] Baalousha, H. M., Barth, N., Ramasomanana, F. H., Ahzi, S., Groundwater recharge estimation and its spatial distribution in arid regions using GIS: A case study from Qatar Karst aquifer. Modeling Earth Systems and Environment, 4(4), 1319-1329. https://doi.org/10.1007/s40808-018-0503-4. 2018. [34] State Hydraulic Works, Hydrogelogical report of Ergene Basin. State Hydraulic Works, Ankara. 2003.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Sayı
Yazarlar

Orhan Arkoç 0000-0002-5610-8251

Proje Numarası Proje kapsamında değil
Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Arkoç, O. (2020). ASSESSMENT OF TEMPORAL VARIATIONS OF GROUNDWATER RECHARGE IN ERGENE BASIN (NORTHWESTERN TURKEY) IN TERMS OF CLIMATE CHANGE. Kirklareli University Journal of Engineering and Science, 6(2), 95-118. https://doi.org/10.34186/klujes.771456