Derleme
BibTex RIS Kaynak Göster

MODELS FROM NATURE FOR INNOVATIVE BUILDING SKINS

Yıl 2017, Cilt: 3 Sayı: 2, 142 - 165, 30.12.2017

Öz

The
general aim of this research is to transform the knowledge of biological
systems (natural solutions) into architectural knowledge for the design of
innovative building skins. The basic questions for research are formulated as
follows: What are the best skin models in nature? How are these models utilized
in the best way for building skin? What kind of building skins can be improved
to adapt to changing conditions? In
this context, the study aims to determine with a literature review,  effects of biological paradigm to building skin
design, innovative ideas and concepts
produced in this process; how biological principles used in design on
conceptual/experimental and applied projects by analysis study, what kind of
solutions are produced.
 

Kaynakça

  • [1] Wang, J. J., Beltrán, L. O., & Kim, J. From Static to Kinetic: A Review of Acclimated Kinetic Building Envelopes. https://ases.conferenceservices.net/resources/252/2859/pdf/SOLAR2012_0618_full%20paper.pdf
  • [2] Fernandez, M. L., Rubio, R., González, S. M. Architectural Envelopes that Interact with their Environment. In New concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on (pp. 1-6). IEEE. 2013.
  • [3] Wigginton, M., Harris, J. Intelligent Skins. Oxford: Architectural Press. 2002.
  • [4] Yowell, J. Biomimetic Building Skin: A Phenomenological Approach Using Tree Bark As Model. Doctoral Dissertation, University of Oklahoma. 2011.
  • [5] Eilouti, B. H. Knowledge Recycling and Transformation in Design. In: New Research On Knowledge Management Models And Methods, In:Huei Tse Hou (Eds.), Intech, 65-76. 2012.
  • [6] Benyus, J. M., Biomimicry Innovation Inspired By Nature. Harper Perennial, NewYork. 1997.
  • [7] Mazzoleni, I. Architecture Follows Nature-Biomimetic Principles For Innovative Design (Vol. 2). CRC Press. 2013.
  • [8] Gupta, N., Verma, S. Responsive to Adaptive–The Shifting Trends in Architecture http://www.arch2o.com/responsive-to-adaptive-the-shifting-trends-in-architecture/
  • [9] Dinur, B. Interweaving Architecture and Ecology–A Theoretical Perspective. In Proceedings of the 6th International Conference of the European Academy of Design, op. cit. 2004.
  • [10] Rankouhi, A. R. Naturally Inspired Design Investigation into the Application of Biomimicry. PhD, The Pennsylvania State University. 2012.
  • [11] Mahmoud, E. Biomimicry: A New Approach to Enhance the Efficiency of Natural Ventilation Systems in Hot Climate, International Seminar Arquitectonics Network, Architecture and Research, Barcelona. 2010.
  • [12] Parker, A. R. & Lawrence, C. R. Water Capture by a Desert Beetle. Nature, 414, 33. 2001.
  • [13] Badarnah, K.L. Towards the Living Envelope: Biomimetics for Building Envelope Adaptation. PhD diss., Delft University of Technology, Delft, The Netherlands. 2012.
  • [14] Koch, K., Bhushan, B., and Barthlott, W. Multifunctional Surface Structures of Plants. An Inspiration for Biomimetics. Philosophical Transactions of the Royal Society, 367, 1487-1509. doi: 10.1098/rsta.2009.0022, 2009.
  • [15] Bhushan, B. Biomimetics: Lessons From Nature–An Overview. Philosophical Transactions of the Royal Society, 367, 1445-1486. doi: 10.1098/rsta.2009.0011, 2009.
  • [16] Gibson, L. The Hierarchical Structure and Mechanics of Plant Materials. Journal of the Royal Society Interface, 12, 106. 2012.
  • [17] Shirtcliffe, J.N.; McHale, G.; Newton, M.I. Learning from Superhydrophobic Plants: The Use of Hydrophilic Areas on Superhydrophobic Surfaces for Droplet Control Part of the “Langmuir 25th Year: Wetting and Superhydrophobicity” Special Issue. 25, 14121–14128. 2009.
  • [18] Latthe, Sanjay S., et al. "Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf." Molecules 19.4: 4256-4283. 2014.
  • [19] Koch, K., & Barthlott, W. Superhydrophobic and superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials. Philosophical Transactions of the Royal Society, 367, 1487–1509 doi:10.1098/rsta.2009.0022, 2009.
  • [20] Bar-Cohen, Y. Introduction to Biomimetics: The Wealth of Inventions in Nature as an Inspiration for Human Innovation, Biomimetics. Biologically Inspired Technologies, Taylor & Francis Group. 2006.
  • [21] Pan, C. A., & Jeng, T. Exploring sensing-based kinetic design for responsive architecture. Proceedings of CAADRIA2008. 2008.
  • [22] Armadillo, http://a-z animals.com/animals/armadillo/
  • [23] Pangolin Scales, http://onca.org.uk/pangolin-scales
  • [24] Brainerd, E.L. Pufferfish Inflation: Functional Morphology of Post Cranial Structures in Diodon Holocanthus (Tetraodontiformes). J. Morphol. 220: 243–261. 1994.
  • [25] Anous, I. H. I., "Biomimicry" Innovative Approach in Interior Design for Increased Sustainability, American International Journal of Research in Formal, Applied & Natural Sciences, pp. 18-27. 2015.
  • [26] Mazzoleni, I., Biomimetic Envelopes, 2010 http://disegnarecon.cib.unibo.it/article/viewFile/1944/1327(E.T., 2010)
  • [27] Wigginton, M., Harris, J. Intelligent Skins. Oxford: Architectural Press. 2002.
  • [28] Gruber, P. Biomimetics in Architecture. Springer Wien. 2010.
  • [29] Zari, M. P. Biomimetic Design for Climate Change Adaptation and Mitigation. Architectural Science Review, 53(2), 172-183. 2010.
  • [30] Anous, I. H. I. "Biomimicry" Innovative Approach in Interior Design For Increased Sustainability, American International Journal of Research in Formal, Applied & Natural Sciences, pp. 18-27. 2015.
  • [31] Meinhold, B. “Qatar sprouts a towering cactus skyscraper”, 2009. http://inhabitat.com/qatar-cactus-office-building/
  • [32] Al Bahar Towers, Abu Dhabi. 2013 http://www.ctbuh.org/TallBuildings/FeaturedTallBuildings/AlBaharTowersAbuDhabi/tabid/3845/language/en-US/Default.aspx
  • [33] The Heliotrope House Automatically Follows the Sun Like a Plant, http://www.fastcompany.com/biomimicry/the-heliotrope-house-automatically-follows-the-sun-like-a-plant
  • [34] Michler, A. Heliotrope: The World's First Energy Positive Solar, 2013. http://inhabitat.com/heliotrope-the-worlds-first-energy-positive-solar-home/
  • [35] Lotus Effect, New Development Based on Nanotechnology, http://exposicio.cdmt.es/tecnologia-lotus-effect.html
  • [36] Architecture, Design & Innovation, 2013. https://kirhammond.wordpress.com/tag/balcony-systems/
  • [37] Aldersey-Williams, H. Zoomorphic-New Animal Architecture, London, Laurence King Publishing. 2003.
  • [38] Zari, M. P. Biomimetic Approaches to Architectural Design for Increased Sustainability. Auckland, New Zealand. 2007.
  • [39] EHSAAN, Lord Foster’s Natural Inspiration: The Gherkin Tower, 2010. http://www.biomimetic-architecture.com/2010/lord-fosters-natural-inspiration-the-gherkin-tower
  • [40] Riley, T.; Nordenson, G. Tall Buildings, The Museum of Modern Art, New York, NY. 2003.
  • [41] Chapa, J. CH2: Australia’s Greenest Building, 2007. http://inhabitat.com/ch2-australias-greenest-building/)
  • [42] Zimmer, L. Germany's Q1 Building Boasts a Dazzling Facade of 400,000 Metal "Feathers". 2011. http://inhabitat.com/germanys-q1-building-boasts-a-dazzling-facade-of-400000-metal-feathers/
  • [43] Knaack, U., Klein, T., Bilow, M. Imagine No. 01: Facades (Vol. 1). 010 Publishers. 2008.
  • [44] Gruber, P.; Gosztonyi, S., Skin in architecture: Towards bioinspired facades, Design and Nature V, Comparing Design in Nature with Science and Engineering, Editör: C. A. Brebbia,A. Carpi, WIT Pres, pp. 503-516. 2010.
  • [45] BioSkin – Research Potentials for Biologically Inspired Energy Efficient Façade Components and Systems, http://bionicfacades.net/dokumente/BioSKIN_summary_PrjNr822515_AIT_en_2.pdf
  • [46] Mazzoleni, I., 2010, Biomimetic Envelopes, http://disegnarecon.cib.unibo.it/article/viewFile/1944/1327(E.T., 2010)
  • [47] Basantani, M. 2008. HABITAT 2020: Future smart ‘living’ architecture,, http://inhabitat.com/habitat-2020-off-the-grid-future-abode/
  • [48] Badarnah, K., L., Farchi, Y., Knaack, U. Solutions from Nature for Building Envelope Thermoregulation. Proceedings of the Fifth Design & Nature Conference: Comparing Design and Nature with Science and Engineering, Edited by A. Carpi and C. A. Brebbia, 251–262. Southampton: WIT Press. 2010.
  • [49] Gruber, P., The Signs of Life in Architecture, Bioinspiration & Biomimetics, Volume 3, Number 2. 2008.
  • [50] Polar Bear-Keep It Warm, http://www.imstudio.us/US_polarBear.html
  • [51] Turner, J. S., & Soar, R. C. May. Beyond Biomimicry: What Termites Can Tell Us About Realizing The Living Building? In Proceedings of 1st International Conference on Industrialized, Integrated, Intelligent Construction, Loughborough, UK (pp. 221-237). 2008.
  • [52] Las Palmas Theter, 2012. http://bioinspire.wikispaces.com/file/view/Las+Palmas+Water+Theatre.docx
  • [53] Sustainable 'Fog Catcher' Design Is Finalist in Bentley 'Be Inspired' 2010 Awards, http://www.atlasindustries.com/sustainable-fog-catcher-design-is-finalist-in-bentley-be-inspired-2010-awards-30-30.html
  • [54] Maglic, M. J. Biomimicry: Using Nature as a Model for Design. Master Thesis, University of Massachusetts Amherst, ABD. 2012.
  • [55] Deep Skins: New Skyscraper Typology in NYC as an Adaptive Organism. http://www.evolo.us/competition/deep-skins-new-skyscraper-typology-in-nyc-as-an-adaptive-organism/
  • [56] Yeler, G. M. Mimarlıkta Biyomorfizm (Biomorphism in architecture), PhD. Thesis, Trakya University, Graduate School of Science, Edirne. 2012.

MODELS FROM NATURE FOR INNOVATIVE BUILDING SKINS

Yıl 2017, Cilt: 3 Sayı: 2, 142 - 165, 30.12.2017

Öz

Bu
araştırmanın genel amacı, yenilikçi bina kabukları tasarımı için biyolojik
sistemler bilgisini (doğadaki çözümleri) mimarlık bilgisine dönüştürmektir. Araştırmaya
temel olan sorular şu şekilde formüle edilmiştir: Doğadaki en iyi kabuk
modelleri nelerdir? Bu modeller yapı kabuğu oluşturmak için en iyi şekilde
nasıl kullanılır? Değişen koşullara uyum sağlamak için hangi tür yapı kabukları
geliştirilebilir? Bu bağlamda, çalışma bir literatür taraması ile biyolojik
paradigmanın yapı kabuğu tasarımına, bu süreçte üretilen yenilikçi fikirlere ve
kavramlara etkilerini belirlemeyi; kavramsal/deneysel tasarımlar ve uygulanan
projeler üzerinden, biyolojik ilkelerin nasıl kullanıldığını, ne tür çözümler
üretildiğini analiz etmeyi amaçlamaktadır.

Kaynakça

  • [1] Wang, J. J., Beltrán, L. O., & Kim, J. From Static to Kinetic: A Review of Acclimated Kinetic Building Envelopes. https://ases.conferenceservices.net/resources/252/2859/pdf/SOLAR2012_0618_full%20paper.pdf
  • [2] Fernandez, M. L., Rubio, R., González, S. M. Architectural Envelopes that Interact with their Environment. In New concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), 2013 International Conference on (pp. 1-6). IEEE. 2013.
  • [3] Wigginton, M., Harris, J. Intelligent Skins. Oxford: Architectural Press. 2002.
  • [4] Yowell, J. Biomimetic Building Skin: A Phenomenological Approach Using Tree Bark As Model. Doctoral Dissertation, University of Oklahoma. 2011.
  • [5] Eilouti, B. H. Knowledge Recycling and Transformation in Design. In: New Research On Knowledge Management Models And Methods, In:Huei Tse Hou (Eds.), Intech, 65-76. 2012.
  • [6] Benyus, J. M., Biomimicry Innovation Inspired By Nature. Harper Perennial, NewYork. 1997.
  • [7] Mazzoleni, I. Architecture Follows Nature-Biomimetic Principles For Innovative Design (Vol. 2). CRC Press. 2013.
  • [8] Gupta, N., Verma, S. Responsive to Adaptive–The Shifting Trends in Architecture http://www.arch2o.com/responsive-to-adaptive-the-shifting-trends-in-architecture/
  • [9] Dinur, B. Interweaving Architecture and Ecology–A Theoretical Perspective. In Proceedings of the 6th International Conference of the European Academy of Design, op. cit. 2004.
  • [10] Rankouhi, A. R. Naturally Inspired Design Investigation into the Application of Biomimicry. PhD, The Pennsylvania State University. 2012.
  • [11] Mahmoud, E. Biomimicry: A New Approach to Enhance the Efficiency of Natural Ventilation Systems in Hot Climate, International Seminar Arquitectonics Network, Architecture and Research, Barcelona. 2010.
  • [12] Parker, A. R. & Lawrence, C. R. Water Capture by a Desert Beetle. Nature, 414, 33. 2001.
  • [13] Badarnah, K.L. Towards the Living Envelope: Biomimetics for Building Envelope Adaptation. PhD diss., Delft University of Technology, Delft, The Netherlands. 2012.
  • [14] Koch, K., Bhushan, B., and Barthlott, W. Multifunctional Surface Structures of Plants. An Inspiration for Biomimetics. Philosophical Transactions of the Royal Society, 367, 1487-1509. doi: 10.1098/rsta.2009.0022, 2009.
  • [15] Bhushan, B. Biomimetics: Lessons From Nature–An Overview. Philosophical Transactions of the Royal Society, 367, 1445-1486. doi: 10.1098/rsta.2009.0011, 2009.
  • [16] Gibson, L. The Hierarchical Structure and Mechanics of Plant Materials. Journal of the Royal Society Interface, 12, 106. 2012.
  • [17] Shirtcliffe, J.N.; McHale, G.; Newton, M.I. Learning from Superhydrophobic Plants: The Use of Hydrophilic Areas on Superhydrophobic Surfaces for Droplet Control Part of the “Langmuir 25th Year: Wetting and Superhydrophobicity” Special Issue. 25, 14121–14128. 2009.
  • [18] Latthe, Sanjay S., et al. "Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf." Molecules 19.4: 4256-4283. 2014.
  • [19] Koch, K., & Barthlott, W. Superhydrophobic and superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials. Philosophical Transactions of the Royal Society, 367, 1487–1509 doi:10.1098/rsta.2009.0022, 2009.
  • [20] Bar-Cohen, Y. Introduction to Biomimetics: The Wealth of Inventions in Nature as an Inspiration for Human Innovation, Biomimetics. Biologically Inspired Technologies, Taylor & Francis Group. 2006.
  • [21] Pan, C. A., & Jeng, T. Exploring sensing-based kinetic design for responsive architecture. Proceedings of CAADRIA2008. 2008.
  • [22] Armadillo, http://a-z animals.com/animals/armadillo/
  • [23] Pangolin Scales, http://onca.org.uk/pangolin-scales
  • [24] Brainerd, E.L. Pufferfish Inflation: Functional Morphology of Post Cranial Structures in Diodon Holocanthus (Tetraodontiformes). J. Morphol. 220: 243–261. 1994.
  • [25] Anous, I. H. I., "Biomimicry" Innovative Approach in Interior Design for Increased Sustainability, American International Journal of Research in Formal, Applied & Natural Sciences, pp. 18-27. 2015.
  • [26] Mazzoleni, I., Biomimetic Envelopes, 2010 http://disegnarecon.cib.unibo.it/article/viewFile/1944/1327(E.T., 2010)
  • [27] Wigginton, M., Harris, J. Intelligent Skins. Oxford: Architectural Press. 2002.
  • [28] Gruber, P. Biomimetics in Architecture. Springer Wien. 2010.
  • [29] Zari, M. P. Biomimetic Design for Climate Change Adaptation and Mitigation. Architectural Science Review, 53(2), 172-183. 2010.
  • [30] Anous, I. H. I. "Biomimicry" Innovative Approach in Interior Design For Increased Sustainability, American International Journal of Research in Formal, Applied & Natural Sciences, pp. 18-27. 2015.
  • [31] Meinhold, B. “Qatar sprouts a towering cactus skyscraper”, 2009. http://inhabitat.com/qatar-cactus-office-building/
  • [32] Al Bahar Towers, Abu Dhabi. 2013 http://www.ctbuh.org/TallBuildings/FeaturedTallBuildings/AlBaharTowersAbuDhabi/tabid/3845/language/en-US/Default.aspx
  • [33] The Heliotrope House Automatically Follows the Sun Like a Plant, http://www.fastcompany.com/biomimicry/the-heliotrope-house-automatically-follows-the-sun-like-a-plant
  • [34] Michler, A. Heliotrope: The World's First Energy Positive Solar, 2013. http://inhabitat.com/heliotrope-the-worlds-first-energy-positive-solar-home/
  • [35] Lotus Effect, New Development Based on Nanotechnology, http://exposicio.cdmt.es/tecnologia-lotus-effect.html
  • [36] Architecture, Design & Innovation, 2013. https://kirhammond.wordpress.com/tag/balcony-systems/
  • [37] Aldersey-Williams, H. Zoomorphic-New Animal Architecture, London, Laurence King Publishing. 2003.
  • [38] Zari, M. P. Biomimetic Approaches to Architectural Design for Increased Sustainability. Auckland, New Zealand. 2007.
  • [39] EHSAAN, Lord Foster’s Natural Inspiration: The Gherkin Tower, 2010. http://www.biomimetic-architecture.com/2010/lord-fosters-natural-inspiration-the-gherkin-tower
  • [40] Riley, T.; Nordenson, G. Tall Buildings, The Museum of Modern Art, New York, NY. 2003.
  • [41] Chapa, J. CH2: Australia’s Greenest Building, 2007. http://inhabitat.com/ch2-australias-greenest-building/)
  • [42] Zimmer, L. Germany's Q1 Building Boasts a Dazzling Facade of 400,000 Metal "Feathers". 2011. http://inhabitat.com/germanys-q1-building-boasts-a-dazzling-facade-of-400000-metal-feathers/
  • [43] Knaack, U., Klein, T., Bilow, M. Imagine No. 01: Facades (Vol. 1). 010 Publishers. 2008.
  • [44] Gruber, P.; Gosztonyi, S., Skin in architecture: Towards bioinspired facades, Design and Nature V, Comparing Design in Nature with Science and Engineering, Editör: C. A. Brebbia,A. Carpi, WIT Pres, pp. 503-516. 2010.
  • [45] BioSkin – Research Potentials for Biologically Inspired Energy Efficient Façade Components and Systems, http://bionicfacades.net/dokumente/BioSKIN_summary_PrjNr822515_AIT_en_2.pdf
  • [46] Mazzoleni, I., 2010, Biomimetic Envelopes, http://disegnarecon.cib.unibo.it/article/viewFile/1944/1327(E.T., 2010)
  • [47] Basantani, M. 2008. HABITAT 2020: Future smart ‘living’ architecture,, http://inhabitat.com/habitat-2020-off-the-grid-future-abode/
  • [48] Badarnah, K., L., Farchi, Y., Knaack, U. Solutions from Nature for Building Envelope Thermoregulation. Proceedings of the Fifth Design & Nature Conference: Comparing Design and Nature with Science and Engineering, Edited by A. Carpi and C. A. Brebbia, 251–262. Southampton: WIT Press. 2010.
  • [49] Gruber, P., The Signs of Life in Architecture, Bioinspiration & Biomimetics, Volume 3, Number 2. 2008.
  • [50] Polar Bear-Keep It Warm, http://www.imstudio.us/US_polarBear.html
  • [51] Turner, J. S., & Soar, R. C. May. Beyond Biomimicry: What Termites Can Tell Us About Realizing The Living Building? In Proceedings of 1st International Conference on Industrialized, Integrated, Intelligent Construction, Loughborough, UK (pp. 221-237). 2008.
  • [52] Las Palmas Theter, 2012. http://bioinspire.wikispaces.com/file/view/Las+Palmas+Water+Theatre.docx
  • [53] Sustainable 'Fog Catcher' Design Is Finalist in Bentley 'Be Inspired' 2010 Awards, http://www.atlasindustries.com/sustainable-fog-catcher-design-is-finalist-in-bentley-be-inspired-2010-awards-30-30.html
  • [54] Maglic, M. J. Biomimicry: Using Nature as a Model for Design. Master Thesis, University of Massachusetts Amherst, ABD. 2012.
  • [55] Deep Skins: New Skyscraper Typology in NYC as an Adaptive Organism. http://www.evolo.us/competition/deep-skins-new-skyscraper-typology-in-nyc-as-an-adaptive-organism/
  • [56] Yeler, G. M. Mimarlıkta Biyomorfizm (Biomorphism in architecture), PhD. Thesis, Trakya University, Graduate School of Science, Edirne. 2012.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Sayı
Yazarlar

Gülcan Minsolmaz Yeler

Soner Yeler

Yayımlanma Tarihi 30 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 2

Kaynak Göster

APA Minsolmaz Yeler, G., & Yeler, S. (2017). MODELS FROM NATURE FOR INNOVATIVE BUILDING SKINS. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 3(2), 142-165.