Araştırma Makalesi
BibTex RIS Kaynak Göster

ASETİL BENZOFURAN METAKRİLAT-KO-STİREN KOPOLİMERLERİNİN SENTEZİ, TERMAL ÖZELLİKLERİ, AKTİVASYON ENERJİSİ ve REAKTİVİTE ORANLARININ HESAPLANMASI

Yıl 2018, Cilt: 4 Sayı: 1, 30 - 48, 30.06.2018

Öz

2-Asetil benzofuran metakrilat (ABM) ve stiren (St) benzoil peroksit (Bz2O2) varlığında beş farklı yüzde oranlarında % (10, 30 50, 70, 90) kopolimerler serbest radikallik yoldan sentezlendi.
Polimerler, dioksanda çözülüp petrol eterinde çöktürüldü. Kopolimerler, elementel analiz, 1HNMR, FT-IR, DSC ve TGA, GPC ile karakterize edildi. Poli(ABM-ko-St) kopolimer serilerinde
ABM oranı arttıkça bozunma sıcaklığının düştüğü, camsı geçiş sıcaklıkları ABM oranı artıkça (127-136 0C) yükseldiği gözlendi. Kopolimerdeki monomer reaktiflik oranları. Kelen Tudos ve Fineman Ross metodlarından r1.r2 değeri 0 ve 1 aralığında bulundu. Kopolimerlerin aktivasyon enerjileri Arrhenius denkleminden (23-30 Joule) bulundu.

Kaynakça

  • [1]. Soykan, C., Erol, I., Synthesis, spectral and thermal properties of homo-and copolymers of 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate with styrene and methyl methacrylate and determination of monomer reactivity ratios, Eur. Polym. J, 39, 2261-2270, 2003. [2]. Erol, I., Soykan, C., Ahmedzade, M., Monomer reactivity ratios of the 2-(3-mesityl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate and styrene system from 1H NMR, J. Polym. Sci., Part A: Polym. Chem, 40, 1756-1763, 2002. [3]. Delibas, A., Soykan, C., Novel copolymers of N-(4-bromophenyl)-2-methacrylamide with 2-acrylamido-2-methyl-1-propanesulfonic acid, J. M. S.-Pure and Appl. Chem, 44(9), 969-975, 2007. [4]. İlter, Z., Coşkun, M., Erol, I., Copolymers of (2-cyclohexylidene-1,3-dioxolane-4-yl) methyl methacrylate with acrylonitrile and styrene: Synthesis, characterization, and monomer reactivity ratios, J. of Polyme Science Par A Polymer Chemistry, 39 232-331, 2001. [5]. Soykan, C., Erol, I., Radical copolymerization of N-(4-acetyl phenyl)-maleimide and styrene: Monomer reactivity ratios and thermal properties, J. of Appl. Polym. Sci, 91(2), 964-970, 2004. [6]. Fernandez-Garcia, M., Torrado, M. F., Martinez, G., Sanchez-Chaves, M., Madruga, E. L., Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: determination of monomer reactivity ratios and glass transition temperatures, Polymer, 41(22), 8001-8008, 2000. [7]. Mageswari, S., Subramanian, K., Synthesis, characterization and study of antibacterial activity of methacrylic copolymer, Polym. Plast. Technol. Eng., 51, 1296-1302, 2012. [8]. Helaly, F.M., Essawy, H.A., Shabana, M.A., Elastic polymeric network structure for slow release drug delivery systems, Polym. Plast. Technol. Eng., 50, 438-441, 2011. [9]. Senthilkumar, H., Balaji, R., Nanjundan, S., Copolymerization of 2-(N-phthalimido)ethyl methacrylate with glycidyl methacrylate: Synthesis, characterization, and monomer reactivity ratios, J. Appl. Polym. Sci., 81(1), 96-103, 2001. [10]. Coskun, M., Demirelli, K., Ersöz, M., Synthesis, characterization, and thermal stability of homopolymer and copolymer of some 3-aryl-2-hydroxypropyl methacrylates, Polym. Plast. Technol, Eng., 41(4), 691-701, 2002. [11]. Ozawa, T., A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38(11), 1881-1886, 1965. [12]. Doyle, C.D., Kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci., 5, 285-292, 1961. [13]. Doyle, C.D., Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6, 639-642, 1962. [14]. Flynn, J.H., Wall, L.A., A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328, 1966. [15]. Reich, L., A rapid estimation of activation energy from thermogravimetric traces, Journal of Polymer Science Part B: Polymer Letters, 2(6), 621-623, 1964 [16]. Simha, R., Wall, L.A., Kinetics of chain depolymerization, The Journal of Physical Chemistry A, 56, 707-715, 1952. [17]. Flynn, J.H., Wall, L.A., General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Stand., 70(A),487-523, 1966. [18]. Ichihara, S., Nakagawa, H., Tsukazawa, Y., Thermal-decomposition behaviors of polymers analyzed with thermogravimetry, Kobunshi Ronbunshu, 51(7), 459-465, 1994. [19]. Soykan, C., Erol, I., Türkmen, H., Akçamur, Y., New poly(methacrylate)s containing benzylpiperazine and methylpiperidine moieties, J. of Polym. Res., 11(3), 181-187, 2004. [20]. Banihashemi, A., Pourabbas, B., Synthesis and properties of novel aromatic polyamides derived from benzofuro[2,3-b]benzofuran-2,9-dicarboxylic acid and aromatic diamines Eur. Polym. J., 34(12), 1809-1815, 1998. [21]. Banihashemi, A., Pourabbas, B., New thermally stable polyamides derived from 2,9-diamino benzofuro[2,3-b]benzofuran, a new monomer Eur. Polym. J., 36(9), 2031-2038, 2000. [22]. Banihashemi, A., Akhlaghinia, B., New heat stable polyethers, polyketones and polysulfones, Macromol. Chem. Phys., 200(10), 2284-2293, 1999. [23]. Banihashemi, A., Firoozifar, S.H., Synthesis and characterization of some new polyarylates derived from two heterocyclic monomers, Iran Polym. J., 9(2), 111-116, 2000. [24]. Pourabbas, B., Banihashemi, A., Polymers with benzofuro-benzofuran structures, Polym. Int., 51(10), 1086-1099, 2002. [25]. Coleman, M.M., Skrovanek, D.J., Painter, P.C., Hydrogen-bonding in polymers 3. Further infrared temperature studies of polyamides, Makromol. Chem. Macromol. Sympos., 5, 21-33, 1986. [26]. İlter, Z., Soykan, C., Solmaz, A., Copolymers of 7-methoxy-2-acetyl benzofuryl methylmethacrylate with styrene: synthesis, characterization, reactivity ratios and determination of kinetic parameters with thermogravimetric analysis, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52, 175-185, 2015. [27]. Chen, Z., Wang, X., Lu, W., Yu, J., Facile cyclodehydration of α-aryloxyketones with zeolites, Synlett., 121–122, 1991. [28]. Vinh, T.K., Ahmedi, M., Delgado, P.O.L., Perez, S.F., Waters, H.M., et al., 1-[(Benzofuran-2-yl)phenylmethyl]-triazoles and tetrazoles-potent competitive inhibitors of aromatas, Biyoorganic&Medicinal Chemistry Letters, 9, 2105-2108, 1999. [29]. Masubuchi, M., Eblike, H., Kawasaki, E., Sogabe, S., Morikami, K., et al., Synthesis and biological activites of benzofuran antifungal agent stargeting fungal N-myristoyl transferase, Biyoorganic&Medicinal Chemistry, 11, 4463-4478, 2003. [30]. Masubuchi, M., Kawasaki, K., Eblike, H., İkeda, Y., Tsuji, S., et. al., Design and synthesis of novel benzofurans as a new class of antifungal agent stargeting fungal N-myristoyltransferase. Part 1, Biyoorganic&Medicinal Chemistry Letters, 11, 1833-1837, 2001. [31]. Ergen, Z., Asetil benzofuran metakrilat, homo ve kopolimerlerinin sentezi ve özelliklerinin incelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 64. 2006. [32]. Çakmak, İ., İlter, Z., Örek, C., 2-Asetil benzofuran-metakrilat kopolimerinin sentezi, karakterizasyonu ve antimikrobiyal etkilerinin araştırılması, Science J of Bingöl Üniv., 1(2), 17-23, 2011. [33]. Tüdös, F., Kelen, T., Turcsanyi, B., Kennedy, J.P., Analysis of the linear methods for determining copolymerization reactivity ratios. VI. A comprehensive critical reexamination of oxonium ion copolymerizations, J. Polym. Sci., 19, 1119-1132, 1981. [34]. Finemann, M., Ross, S.D., Linear method for determining monomer reactivity ratios in copolymerization, J., Polym. Sci., 5, 259-262, 1950. [35]. Walling, C., Briggs, E., Wolfstirn, K., Mayo, F., Copolymerization X. The effect of meta- and para-substitution on the reactivity of the styrene double bond, J. Am. Chem. Soc., 70, 1537, 1948. [36]. Katz, D., Polymerization and copolymerization of 1-and 9-vinylanthracenes and 9-vinylphenanthrene, J. Polym. Sci. Part A:Polym.Chem., 1, 1635, 1963. [37]. Balaji, R., Subramanian, K., Nanjundan, S., Rami Reddy, A. V., Copolymers of 4-(4′-chlorocinnamoyl)phenyl methacrylate and methyl methacrylate: Synthesis, characterization and determination of reactivity ratios, J. Appl. Polym. Sci., 78, 1412-1418, 2000. [38]. Aguilar, M. R., Gallardo, A., del Mar Fernandez, M., San Roman, J., Cifuentes, A., Micellar electrokinetic chromatography:  A powerful analytical tool to study copolymerization reactions involving ionic species, Macromolecules, 35(6), 2036-2041, 2002.

ASETİL BENZOFURAN METAKRİLAT-KO-STİREN KOPOLİMERLERİNİN SENTEZİ, TERMAL ÖZELLİKLERİ, AKTİVASYON ENERJİSİ ve REAKTİVİTE ORANLARININ HESAPLANMASI

Yıl 2018, Cilt: 4 Sayı: 1, 30 - 48, 30.06.2018

Öz

Copolymers of five percentages (10, 30, 50, 70, 90) were synthesized from 2-acetyl benzofuran methacrylate (ABM) and styrene (St) in the presence of benzoyl peroxide (Bz2O2) by free radicals. The polymers were dissolved in dioxane and precipitated in petroleum ether. Copolymers were characterized by elemental analysis, 1H-NMR, FT-IR, DSC, TGA and GPC. It
was observed that as the ABM ratio increased in the poly(ABM-co-St) copolymer series, the degradation temperature decreased and as the ABM ratio increased, the glass transition
temperature also increased (127-136 °C). The monomer reactivity ratios in the copolymer were found to be between 0 and 1 at r1.r2 values from Kelen Tudos and Fineman Ross methods. The activation energies of the copolymers were found in the Arrhenius equation (23-30 Joules).

Kaynakça

  • [1]. Soykan, C., Erol, I., Synthesis, spectral and thermal properties of homo-and copolymers of 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate with styrene and methyl methacrylate and determination of monomer reactivity ratios, Eur. Polym. J, 39, 2261-2270, 2003. [2]. Erol, I., Soykan, C., Ahmedzade, M., Monomer reactivity ratios of the 2-(3-mesityl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate and styrene system from 1H NMR, J. Polym. Sci., Part A: Polym. Chem, 40, 1756-1763, 2002. [3]. Delibas, A., Soykan, C., Novel copolymers of N-(4-bromophenyl)-2-methacrylamide with 2-acrylamido-2-methyl-1-propanesulfonic acid, J. M. S.-Pure and Appl. Chem, 44(9), 969-975, 2007. [4]. İlter, Z., Coşkun, M., Erol, I., Copolymers of (2-cyclohexylidene-1,3-dioxolane-4-yl) methyl methacrylate with acrylonitrile and styrene: Synthesis, characterization, and monomer reactivity ratios, J. of Polyme Science Par A Polymer Chemistry, 39 232-331, 2001. [5]. Soykan, C., Erol, I., Radical copolymerization of N-(4-acetyl phenyl)-maleimide and styrene: Monomer reactivity ratios and thermal properties, J. of Appl. Polym. Sci, 91(2), 964-970, 2004. [6]. Fernandez-Garcia, M., Torrado, M. F., Martinez, G., Sanchez-Chaves, M., Madruga, E. L., Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: determination of monomer reactivity ratios and glass transition temperatures, Polymer, 41(22), 8001-8008, 2000. [7]. Mageswari, S., Subramanian, K., Synthesis, characterization and study of antibacterial activity of methacrylic copolymer, Polym. Plast. Technol. Eng., 51, 1296-1302, 2012. [8]. Helaly, F.M., Essawy, H.A., Shabana, M.A., Elastic polymeric network structure for slow release drug delivery systems, Polym. Plast. Technol. Eng., 50, 438-441, 2011. [9]. Senthilkumar, H., Balaji, R., Nanjundan, S., Copolymerization of 2-(N-phthalimido)ethyl methacrylate with glycidyl methacrylate: Synthesis, characterization, and monomer reactivity ratios, J. Appl. Polym. Sci., 81(1), 96-103, 2001. [10]. Coskun, M., Demirelli, K., Ersöz, M., Synthesis, characterization, and thermal stability of homopolymer and copolymer of some 3-aryl-2-hydroxypropyl methacrylates, Polym. Plast. Technol, Eng., 41(4), 691-701, 2002. [11]. Ozawa, T., A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, 38(11), 1881-1886, 1965. [12]. Doyle, C.D., Kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci., 5, 285-292, 1961. [13]. Doyle, C.D., Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci., 6, 639-642, 1962. [14]. Flynn, J.H., Wall, L.A., A quick, direct method for the determination of activation energy from thermogravimetric data, Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328, 1966. [15]. Reich, L., A rapid estimation of activation energy from thermogravimetric traces, Journal of Polymer Science Part B: Polymer Letters, 2(6), 621-623, 1964 [16]. Simha, R., Wall, L.A., Kinetics of chain depolymerization, The Journal of Physical Chemistry A, 56, 707-715, 1952. [17]. Flynn, J.H., Wall, L.A., General treatment of the thermogravimetry of polymers, J. Res. Nat. Bur. Stand., 70(A),487-523, 1966. [18]. Ichihara, S., Nakagawa, H., Tsukazawa, Y., Thermal-decomposition behaviors of polymers analyzed with thermogravimetry, Kobunshi Ronbunshu, 51(7), 459-465, 1994. [19]. Soykan, C., Erol, I., Türkmen, H., Akçamur, Y., New poly(methacrylate)s containing benzylpiperazine and methylpiperidine moieties, J. of Polym. Res., 11(3), 181-187, 2004. [20]. Banihashemi, A., Pourabbas, B., Synthesis and properties of novel aromatic polyamides derived from benzofuro[2,3-b]benzofuran-2,9-dicarboxylic acid and aromatic diamines Eur. Polym. J., 34(12), 1809-1815, 1998. [21]. Banihashemi, A., Pourabbas, B., New thermally stable polyamides derived from 2,9-diamino benzofuro[2,3-b]benzofuran, a new monomer Eur. Polym. J., 36(9), 2031-2038, 2000. [22]. Banihashemi, A., Akhlaghinia, B., New heat stable polyethers, polyketones and polysulfones, Macromol. Chem. Phys., 200(10), 2284-2293, 1999. [23]. Banihashemi, A., Firoozifar, S.H., Synthesis and characterization of some new polyarylates derived from two heterocyclic monomers, Iran Polym. J., 9(2), 111-116, 2000. [24]. Pourabbas, B., Banihashemi, A., Polymers with benzofuro-benzofuran structures, Polym. Int., 51(10), 1086-1099, 2002. [25]. Coleman, M.M., Skrovanek, D.J., Painter, P.C., Hydrogen-bonding in polymers 3. Further infrared temperature studies of polyamides, Makromol. Chem. Macromol. Sympos., 5, 21-33, 1986. [26]. İlter, Z., Soykan, C., Solmaz, A., Copolymers of 7-methoxy-2-acetyl benzofuryl methylmethacrylate with styrene: synthesis, characterization, reactivity ratios and determination of kinetic parameters with thermogravimetric analysis, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52, 175-185, 2015. [27]. Chen, Z., Wang, X., Lu, W., Yu, J., Facile cyclodehydration of α-aryloxyketones with zeolites, Synlett., 121–122, 1991. [28]. Vinh, T.K., Ahmedi, M., Delgado, P.O.L., Perez, S.F., Waters, H.M., et al., 1-[(Benzofuran-2-yl)phenylmethyl]-triazoles and tetrazoles-potent competitive inhibitors of aromatas, Biyoorganic&Medicinal Chemistry Letters, 9, 2105-2108, 1999. [29]. Masubuchi, M., Eblike, H., Kawasaki, E., Sogabe, S., Morikami, K., et al., Synthesis and biological activites of benzofuran antifungal agent stargeting fungal N-myristoyl transferase, Biyoorganic&Medicinal Chemistry, 11, 4463-4478, 2003. [30]. Masubuchi, M., Kawasaki, K., Eblike, H., İkeda, Y., Tsuji, S., et. al., Design and synthesis of novel benzofurans as a new class of antifungal agent stargeting fungal N-myristoyltransferase. Part 1, Biyoorganic&Medicinal Chemistry Letters, 11, 1833-1837, 2001. [31]. Ergen, Z., Asetil benzofuran metakrilat, homo ve kopolimerlerinin sentezi ve özelliklerinin incelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 64. 2006. [32]. Çakmak, İ., İlter, Z., Örek, C., 2-Asetil benzofuran-metakrilat kopolimerinin sentezi, karakterizasyonu ve antimikrobiyal etkilerinin araştırılması, Science J of Bingöl Üniv., 1(2), 17-23, 2011. [33]. Tüdös, F., Kelen, T., Turcsanyi, B., Kennedy, J.P., Analysis of the linear methods for determining copolymerization reactivity ratios. VI. A comprehensive critical reexamination of oxonium ion copolymerizations, J. Polym. Sci., 19, 1119-1132, 1981. [34]. Finemann, M., Ross, S.D., Linear method for determining monomer reactivity ratios in copolymerization, J., Polym. Sci., 5, 259-262, 1950. [35]. Walling, C., Briggs, E., Wolfstirn, K., Mayo, F., Copolymerization X. The effect of meta- and para-substitution on the reactivity of the styrene double bond, J. Am. Chem. Soc., 70, 1537, 1948. [36]. Katz, D., Polymerization and copolymerization of 1-and 9-vinylanthracenes and 9-vinylphenanthrene, J. Polym. Sci. Part A:Polym.Chem., 1, 1635, 1963. [37]. Balaji, R., Subramanian, K., Nanjundan, S., Rami Reddy, A. V., Copolymers of 4-(4′-chlorocinnamoyl)phenyl methacrylate and methyl methacrylate: Synthesis, characterization and determination of reactivity ratios, J. Appl. Polym. Sci., 78, 1412-1418, 2000. [38]. Aguilar, M. R., Gallardo, A., del Mar Fernandez, M., San Roman, J., Cifuentes, A., Micellar electrokinetic chromatography:  A powerful analytical tool to study copolymerization reactions involving ionic species, Macromolecules, 35(6), 2036-2041, 2002.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Sayı
Yazarlar

Zülfiye İlter

Zehra Ergen Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 4 Sayı: 1

Kaynak Göster

APA İlter, Z., & Ergen, Z. (2018). ASETİL BENZOFURAN METAKRİLAT-KO-STİREN KOPOLİMERLERİNİN SENTEZİ, TERMAL ÖZELLİKLERİ, AKTİVASYON ENERJİSİ ve REAKTİVİTE ORANLARININ HESAPLANMASI. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 4(1), 30-48.