Araştırma Makalesi
BibTex RIS Kaynak Göster

INFRARED DETECTING BEHAVIOURS OF Cu2NiSnS4 PHOTODIODES

Yıl 2020, Cilt: 6 Sayı: 2, 119 - 131, 31.12.2020
https://doi.org/10.34186/klujes.702575

Öz

A photodetector in Al/p-Si/Cu2NiSnS4/Al form was produced using sol-gel method. Scanning electron microscopy (SEM) was used in the structural assessment of the photodetectors. Microscopic investigations showed that Cu2NiSnS4 structures were formed in nanostructure in granular form. Current–time and current-voltage investigations confirmed that Al/p-Si/Cu2NiSnS4/Al photodiodes have infrared sensing properties. Photodetection properties such as linear dynamic rate, ideality factor, photosensitivity, and photoresponse characteristics were assessed. Results also validate the infrared sensing properties of the diodes. The barrier height of the Al/p-Si/Cu2CoSnS4/Al diodes was calculated as 0.466 eV. Ideality factor of the diodes was found to be 5.16. Results indicate that our Al/p-Si/Cu2CoSnS4/Al diodes are suitable for infrared tracking device applications.

Kaynakça

  • Reference1 M. Koç et al., “Electrical characterization of solar sensitive zinc oxide doped-amorphous carbon photodiode,” Optik (Stuttg)., no. 178, pp. 316–326, 2019. Reference2 N. Aslan et al., “Ti doped amorphous carbon (Al/Ti-a:C/p-Si/Al) photodiodes for optoelectronic applications,” J. Mol. Struct., vol. 1155, 2018. Reference3 N. Aslan, N. Başman, and O. Uzun, “Investigation of Optical, Morphological and Mechanical Properties of Diamond-Like Carbon Films Synthesized by Electrodeposition Technique Using Formic Acid,” Int. J. Pure Appl. Sci., vol. 2, no. 2, pp. 57–63, Dec. 2016. Reference4 A. Dere, M. Soylu, and F. Yakuphanoglu, “Solar light sensitive photodiode produced using a coumarin doped bismuth oxide composite,” Mater. Sci. Semicond. Process., vol. 90, pp. 129–142, Feb. 2019. Reference5 A. Mekki et al., “Graphene controlled organic photodetectors,” Synth. Met., vol. 217, pp. 43–56, Jul. 2016. Reference6 N. Aslan, N. Başman, O. Uzun, M. Erkovan, and F. Yakuphanoğlu, “The effects of deposition potential on the optical, morphological and mechanical properties of DLC films produced by electrochemical deposition technique at low,” Mater. Sci., vol. 37, no. 2, pp. 166–172, 2019. Reference7 A. A. Hendi and F. Yakuphanoglu, “Graphene doped TiO2/p-silicon heterojunction photodiode,” J. Alloys Compd., vol. 665, pp. 418–427, Apr. 2016. Reference8 A. Karabulut et al., “Silicon based photodetector with Ru(II) complexes organic interlayer,” Mater. Sci. Semicond. Process., vol. 91, pp. 422–430, Mar. 2019. Reference9 B. Coskun, T. Asar, U. Akgul, K. Yildiz, and Y. Atici, “Investigation of structural and electrical properties of Zirconium dioxide thin films deposited by reactive RF sputtering technique,” Ferroelectrics, vol. 502, no. 1, pp. 147–158, Sep. 2016. Reference10 B. Coşkun et al., “Optoelectrical properties of Al/p-Si/Fe:N doped ZnO/Al diodes,” Thin Solid Films, vol. 653, pp. 236–248, May 2018. Reference11 T. Rezkallah, I. Djabri, M. M. Koç, M. Erkovan, Y. Chumakov, and F. Chemam, “Investigation of the electronic and magnetic properties of Mn doped ZnO using the FP-LAPW method,” Chinese J. Phys., vol. 55, no. 4, pp. 1432–1440, 2017. Reference12 R. Topkaya, M. Erkovan, A. Öztürk, O. Öztürk, B. Akta, and M. Özdemir, “Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers,” J. Appl. Phys., vol. 108, no. 2, Jul. 2010. Reference13 M. Erkovan et al., “Probing Exchange Bias Properties of Pt x Co1−x /Pt/CoO Films,” J. Supercond. Nov. Magn., vol. 29, no. 1, pp. 163–168, Jan. 2016. Reference14 F. Yakuphanoglu, “Transparent metal oxide films based sensors for solar tracking applications,” Compos. Part B Eng., vol. 92, pp. 151–159, May 2016. Reference15 A. Tataroğlu, A. A. Al-Ghamdi, F. El-Tantawy, W. A. Farooq, and F. Yakuphanoğlu, “Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique,” Appl. Phys. A, vol. 122, no. 3, p. 220, Mar. 2016. Reference16 F. Yakuphanoglu, “Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 569–573, Sep. 2011. Reference17 A. Gencer Imer, “Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film,” Superlattices Microstruct., vol. 92, pp. 278–284, Apr. 2016. Reference18 S. Dugan, M. M. Koç, and B. Coşkun, “Structural, electrical and optical characterization of Mn doped CdO photodiodes,” J. Mol. Struct., p. 127235, Oct. 2019. Reference19 B. A. H. Ameen, A. Yildiz, W. A. Farooq, and F. Yakuphanoglu, “Solar Light Photodetectors Based on Nanocrystalline Zinc Oxide Cadmium Doped/p-Si Heterojunctions,” Silicon, vol. 11, no. 1, pp. 563–571, Feb. 2019. Reference20 S. H. Güler, M. Boyrazlı, Ö. Başgöz, and F. Yakuphanoglu, “The effects of nanoporous Fe2O3 synthesized via mechano-thermal process on electrical and optical properties of zinc oxide,” Phys. B Condens. Matter, vol. 547, pp. 120–126, Oct. 2018. Reference21 S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, and M. Kabir, “Structural, Electronic, and Optical Properties of Cu2NiSnS4: A Combined Experimental and Theoretical Study toward Photovoltaic Applications,” Chem. Mater., vol. 29, no. 7, pp. 3133–3142, Apr. 2017. Reference22 F. Ozel, E. Aslan, B. Istanbullu, O. Akay, and I. Hatay Patir, “Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals,” Appl. Catal. B Environ., vol. 198, pp. 67–73, Dec. 2016. Reference23 J. Y. Chane-Ching, A. Gillorin, O. Zaberca, A. Balocchi, and X. Marie, “Highly-crystallized quaternary chalcopyrite nanocrystals via a high-temperature dissolution-reprecipitation route,” Chem. Commun., vol. 47, no. 18, pp. 5229–5231, May 2011. Reference24 F. Al-Hazmi and F. Yakuphanoglu, “Cu2ZnSnS4:graphene oxide nanocomposites based photoresponse devices,” J. Alloys Compd., vol. 653, pp. 561–569, Dec. 2015. Reference25 H. J. Chen, S. W. Fu, T. C. Tsai, and C. F. Shih, “Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition,” Mater. Lett., vol. 166, pp. 215–218, Mar. 2016. Reference26 M. Courel, J. A. Andrade-Arvizu, and O. Vigil-Galán, “Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance,” Solid. State. Electron., vol. 111, pp. 243–250, Jul. 2015. Reference27 A. Rogalski, “Infrared detectors: An overview,” Infrared Phys. Technol., vol. 43, no. 3–5, pp. 187–210, Jun. 2002. Reference28 E. Bilgilisoy, S. Özden, E. Bakali, M. Karakaya, and Y. Selamet, “Characterization of CdTe Growth on GaAs Using Different Etching Techniques,” J. Electron. Mater., vol. 44, no. 9, pp. 3124–3133, 2015. Reference29 S. Özden and M. M. Koc, “Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates,” Appl. Nanosci., vol. 8, no. 4, p. pp 891–903, 2018. Reference30 S. Özden and M. M. Koç, “Wet-chemical etching of GaAs(211)B wafers for controlling the surface properties,” Int. J. Surf. Sci. Eng., vol. 13, no. 2/3, p. 79, 2019. Reference31 A. Turut, A. Karabulut, K. Ejderha, and N. Biyikli, “Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures,” Mater. Sci. Semicond. Process., vol. 39, pp. 400–407, Jun. 2015.

INFRARED DETECTING BEHAVIOURS OF Cu2NiSnS4 PHOTODIODES

Yıl 2020, Cilt: 6 Sayı: 2, 119 - 131, 31.12.2020
https://doi.org/10.34186/klujes.702575

Öz

Al/p-Si/Cu2NiSnS4/Al yapıdaki fotodedektörler sol-jel yöntemi kullanılarak üretilmiştir. Taramalı elektron mikroskobu (SEM) kullanılarak fotodedektörler yapısal olarak incelenmiştir. Mikroskopik incelemeler sonucunda Cu2NiSnS4 yapının nanoformda sentezlendiği ve nanoparçacıkların granüler yapıda bir arada bulunduğu gözlemlenmiştir. Akım – zaman ve akım - voltaj gafikleri Al/p-Si/Cu2NiSnS4/Al yapıda üretilmiş olan diyotlarımızın kızılötesini ışığı hisedebilme özellikleri gösterdiğini göstermiştir. Fotodedektör özelliklerini incelemede kullanılan lineer dinamik oran, idalite faktörü, fotohassasiyet, fototepki karasteriklikleri gibi karaktersistik özellikler çalışmamızda detaylıca incelenmiştir. İncelenen fotodiyot karakteristikleri de fotodiyotlarımızın kızılötesi dedektör özellikleri gösterdiğini doğrulamıştır. Al/p-Si/Cu2NiSnS4/Al yapıdaki diyotlarımıza ait bariyer yüksekliği 0.466 eV olarak hesaplanırken idealite faktörü ise 5.16 olarak bulunmuştur. Sonuçlar incelendiğinde Al/p-Si/Cu2NiSnS4/Al yapıda üretilmiş fotodiyotların infrared tarama cihazlarında kullanılmaya uygun olduğu anlaşılmaktadır.

Kaynakça

  • Reference1 M. Koç et al., “Electrical characterization of solar sensitive zinc oxide doped-amorphous carbon photodiode,” Optik (Stuttg)., no. 178, pp. 316–326, 2019. Reference2 N. Aslan et al., “Ti doped amorphous carbon (Al/Ti-a:C/p-Si/Al) photodiodes for optoelectronic applications,” J. Mol. Struct., vol. 1155, 2018. Reference3 N. Aslan, N. Başman, and O. Uzun, “Investigation of Optical, Morphological and Mechanical Properties of Diamond-Like Carbon Films Synthesized by Electrodeposition Technique Using Formic Acid,” Int. J. Pure Appl. Sci., vol. 2, no. 2, pp. 57–63, Dec. 2016. Reference4 A. Dere, M. Soylu, and F. Yakuphanoglu, “Solar light sensitive photodiode produced using a coumarin doped bismuth oxide composite,” Mater. Sci. Semicond. Process., vol. 90, pp. 129–142, Feb. 2019. Reference5 A. Mekki et al., “Graphene controlled organic photodetectors,” Synth. Met., vol. 217, pp. 43–56, Jul. 2016. Reference6 N. Aslan, N. Başman, O. Uzun, M. Erkovan, and F. Yakuphanoğlu, “The effects of deposition potential on the optical, morphological and mechanical properties of DLC films produced by electrochemical deposition technique at low,” Mater. Sci., vol. 37, no. 2, pp. 166–172, 2019. Reference7 A. A. Hendi and F. Yakuphanoglu, “Graphene doped TiO2/p-silicon heterojunction photodiode,” J. Alloys Compd., vol. 665, pp. 418–427, Apr. 2016. Reference8 A. Karabulut et al., “Silicon based photodetector with Ru(II) complexes organic interlayer,” Mater. Sci. Semicond. Process., vol. 91, pp. 422–430, Mar. 2019. Reference9 B. Coskun, T. Asar, U. Akgul, K. Yildiz, and Y. Atici, “Investigation of structural and electrical properties of Zirconium dioxide thin films deposited by reactive RF sputtering technique,” Ferroelectrics, vol. 502, no. 1, pp. 147–158, Sep. 2016. Reference10 B. Coşkun et al., “Optoelectrical properties of Al/p-Si/Fe:N doped ZnO/Al diodes,” Thin Solid Films, vol. 653, pp. 236–248, May 2018. Reference11 T. Rezkallah, I. Djabri, M. M. Koç, M. Erkovan, Y. Chumakov, and F. Chemam, “Investigation of the electronic and magnetic properties of Mn doped ZnO using the FP-LAPW method,” Chinese J. Phys., vol. 55, no. 4, pp. 1432–1440, 2017. Reference12 R. Topkaya, M. Erkovan, A. Öztürk, O. Öztürk, B. Akta, and M. Özdemir, “Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers,” J. Appl. Phys., vol. 108, no. 2, Jul. 2010. Reference13 M. Erkovan et al., “Probing Exchange Bias Properties of Pt x Co1−x /Pt/CoO Films,” J. Supercond. Nov. Magn., vol. 29, no. 1, pp. 163–168, Jan. 2016. Reference14 F. Yakuphanoglu, “Transparent metal oxide films based sensors for solar tracking applications,” Compos. Part B Eng., vol. 92, pp. 151–159, May 2016. Reference15 A. Tataroğlu, A. A. Al-Ghamdi, F. El-Tantawy, W. A. Farooq, and F. Yakuphanoğlu, “Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique,” Appl. Phys. A, vol. 122, no. 3, p. 220, Mar. 2016. Reference16 F. Yakuphanoglu, “Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 569–573, Sep. 2011. Reference17 A. Gencer Imer, “Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film,” Superlattices Microstruct., vol. 92, pp. 278–284, Apr. 2016. Reference18 S. Dugan, M. M. Koç, and B. Coşkun, “Structural, electrical and optical characterization of Mn doped CdO photodiodes,” J. Mol. Struct., p. 127235, Oct. 2019. Reference19 B. A. H. Ameen, A. Yildiz, W. A. Farooq, and F. Yakuphanoglu, “Solar Light Photodetectors Based on Nanocrystalline Zinc Oxide Cadmium Doped/p-Si Heterojunctions,” Silicon, vol. 11, no. 1, pp. 563–571, Feb. 2019. Reference20 S. H. Güler, M. Boyrazlı, Ö. Başgöz, and F. Yakuphanoglu, “The effects of nanoporous Fe2O3 synthesized via mechano-thermal process on electrical and optical properties of zinc oxide,” Phys. B Condens. Matter, vol. 547, pp. 120–126, Oct. 2018. Reference21 S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, and M. Kabir, “Structural, Electronic, and Optical Properties of Cu2NiSnS4: A Combined Experimental and Theoretical Study toward Photovoltaic Applications,” Chem. Mater., vol. 29, no. 7, pp. 3133–3142, Apr. 2017. Reference22 F. Ozel, E. Aslan, B. Istanbullu, O. Akay, and I. Hatay Patir, “Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals,” Appl. Catal. B Environ., vol. 198, pp. 67–73, Dec. 2016. Reference23 J. Y. Chane-Ching, A. Gillorin, O. Zaberca, A. Balocchi, and X. Marie, “Highly-crystallized quaternary chalcopyrite nanocrystals via a high-temperature dissolution-reprecipitation route,” Chem. Commun., vol. 47, no. 18, pp. 5229–5231, May 2011. Reference24 F. Al-Hazmi and F. Yakuphanoglu, “Cu2ZnSnS4:graphene oxide nanocomposites based photoresponse devices,” J. Alloys Compd., vol. 653, pp. 561–569, Dec. 2015. Reference25 H. J. Chen, S. W. Fu, T. C. Tsai, and C. F. Shih, “Quaternary Cu2NiSnS4 thin films as a solar material prepared through electrodeposition,” Mater. Lett., vol. 166, pp. 215–218, Mar. 2016. Reference26 M. Courel, J. A. Andrade-Arvizu, and O. Vigil-Galán, “Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance,” Solid. State. Electron., vol. 111, pp. 243–250, Jul. 2015. Reference27 A. Rogalski, “Infrared detectors: An overview,” Infrared Phys. Technol., vol. 43, no. 3–5, pp. 187–210, Jun. 2002. Reference28 E. Bilgilisoy, S. Özden, E. Bakali, M. Karakaya, and Y. Selamet, “Characterization of CdTe Growth on GaAs Using Different Etching Techniques,” J. Electron. Mater., vol. 44, no. 9, pp. 3124–3133, 2015. Reference29 S. Özden and M. M. Koc, “Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates,” Appl. Nanosci., vol. 8, no. 4, p. pp 891–903, 2018. Reference30 S. Özden and M. M. Koç, “Wet-chemical etching of GaAs(211)B wafers for controlling the surface properties,” Int. J. Surf. Sci. Eng., vol. 13, no. 2/3, p. 79, 2019. Reference31 A. Turut, A. Karabulut, K. Ejderha, and N. Biyikli, “Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures,” Mater. Sci. Semicond. Process., vol. 39, pp. 400–407, Jun. 2015.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Sayı
Yazarlar

Mustafa İlhan Bu kişi benim 0000-0002-8400-8725

Mümin Mehmet Koç 0000-0003-4500-0373

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 2

Kaynak Göster

APA İlhan, M., & Koç, M. M. (2020). INFRARED DETECTING BEHAVIOURS OF Cu2NiSnS4 PHOTODIODES. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 6(2), 119-131. https://doi.org/10.34186/klujes.702575