Araştırma Makalesi
BibTex RIS Kaynak Göster

İHA Görüntüleri Üzerinden Derin Ögrenme ile Rekolte Tahmini: Muz ağacı uygulaması

Yıl 2025, Cilt: 11 Sayı: 1, 11 - 22
https://doi.org/10.34186/klujes.1560553

Öz

Akıllı görüntüleme teknolojilerin tarım ürünlerinin üretimine, hasadına ve sınıflandırmasına entegre edilmesi ile tarım gelişmektedir. Bunun etkisi ile nitelikli ve nicelikli ürünler elde edilmesinin önü açılmaktadır. Tarım alanında görüntüleme teknolojileri ve derin öğrenme yöntemleri kullanımı ile, iklim değişikliği ve çevresel koşullara bağlı değişen rekolte tahmin başarısı da artırılabilir. Bu çalışma, insansız hava araçlarından elde edilen görüntüler yardımı ile YOLO metodunu temel alarak muz ağaçlarında rekolte tahminini önermektedir. İlk olarak, RoboFlow veri kümesi kullanılarak eğitilen YOLOv8 ve YOLOv9 modellerinin performansı analiz edildi. Karşılaştırma sonuçlarına göre YOLOv9 modeli muz görüntülerini %87.6 mAP, %94 Precision, %96 recall ve %85 F1-score ile daha başarılı sonuçlar elde ettiği görülmüştür. YOLOv9 modeli ile, İHA tarafından elde edilen görüntüler üzerinden yapılan deneysel çalışmalarda ağaçlardaki muz rekoltesi ortalama %78 oranında doğru tahmin etmiştir. Bu yöntem, muz ağacı verimini doğru bir şekilde tahmin etmek için güvenilir fakat geliştirilmesi gereken bir tespit yaklaşımı sunar.

Destekleyen Kurum

Tübitak

Proje Numarası

2209A

Kaynakça

  • Bakirci, M., & Bayraktar, I. (2024, April). Boosting aircraft monitoring and security through ground surveillance optimization with YOLOv9. In 2024 12th International Symposium on Digital Forensics and Security (ISDFS), 1-6
  • Bai, Y., Yu, J., Yang, S., & Ning, J. (2024). An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosystems Engineering, 237, 1-12.
  • Balambar, Ş., Karimi, Z. K., Öztürk, F., Acet, Ş. B., & Pekkan, Ö. I. (2021). Uzaktan algılama tekniklerinden yararlanarak tarımsal faliyetlerin izlenmesi. GSI Journals Serie C: Advancements in Information Sciences and Technologies, 4(2), 58-79.
  • Chakraborty, S. K., Chandel, N. S., Jat, D., Tiwari, M. K., Rajwade, Y. A., & Subeesh, A. (2022). Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Computing and Applications, 34(23), 20539-20573.
  • Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. (2023). Available online: https://github.com/ultralytics/ultralytics (accessed on 04 September 2024).
  • Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. (2019). Deep learning for real-time fruit detection and orchard fruit load prediction: Benchmarking of ‘MangoYOLO’. Precis. Agric. 20, 1107–1135.
  • Paul, A., Machavaram, R., Kumar, D., & Nagar, H. (2024). Smart solutions for capsicum Harvesting: Unleashing the power of YOLO for Detection, Segmentation, growth stage Classification, Counting, and real-time mobile identification. Computers and Electronics in Agriculture, 219, 108832.
  • Sneha, N., Sundaram, M., & Ranjan, R. (2024). Acre-Scale Grape Bunch Detection and Predict Grape Harvest Using YOLO Deep Learning Network. SN Computer Science, 5(2), 250.
  • Subeesh, A., Kumar, S. P., Chakraborty, S. K., Upendar, K., Chandel, N. S., Jat, D., Dubey, K., Modi, R.U., Khan, M. M. (2024). UAV imagery coupled deep learning approach for the development of an adaptive in-house web-based application for yield estimation in citrus orchard. Measurement, 234, 114786.
  • Sun, J., Zhou, J., He, Y., Jia, H., & Rottok, L. T. (2024). Detection of rice panicle density for unmanned harvesters via RP-YOLO. Computers and Electronics in Agriculture, 226, 109371.
  • Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A comprehensive review of yolo architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-nas. Machine Learning and Knowledge Extraction, 5(4), 1680-1716.
  • Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., & Liang, Z. (2019). Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and electronics in agriculture, 157, 417-426.
  • Wang, Z. (2024, May). Enhanced Fire Detection Algorithm for Chemical Plants Using Modified YOLOv9 Architecture. In 2024 9th International Conference on Electronic Technology and Information Science (ICETIS), 22-25.
  • Yang, S., Cao, Z., Liu, N., Sun, Y., & Wang, Z. (2024). Maritime Electro-Optical Image Object Matching Based on Improved YOLOv9. Electronics, 13(14), 2774.
  • Yıldırım, Ş., & Ulu, B. (2023). Deep learning-based apples counting for yield forecast using proposed flying robotic system. Sensors, 23(13), 6171.

Yield Prediction with Deep Learning on UAV Images: Banana tree application

Yıl 2025, Cilt: 11 Sayı: 1, 11 - 22
https://doi.org/10.34186/klujes.1560553

Öz

Agriculture is developing with the integration of smart imaging technologies into the production, harvesting, and classification of agricultural products. This paves the way for obtaining qualified and quantitative products. The use of imaging technologies and deep learning methods in the agricultural field can increase the success of yield prediction, considering climate change and environmental conditions. This study proposes yield prediction for banana trees based on the YOLO method, using images obtained from unmanned aerial vehicles. Firstly, the performance of YOLOv8 and YOLOv9 models trained using the RoboFlow dataset is analysed. According to the comparison results, it was observed that the YOLOv9 model obtained more successful results with 87.6% mAP, 94% precision, 96% recall, and 85% F1-score. Using the YOLOv9 model, the banana yield in the trees was estimated correctly by an average of 78% in the experimental studies conducted on the images obtained by the UAV. This method provides a reliable detection approach for accurately estimating the banana tree yield but needs to be improved.

Proje Numarası

2209A

Kaynakça

  • Bakirci, M., & Bayraktar, I. (2024, April). Boosting aircraft monitoring and security through ground surveillance optimization with YOLOv9. In 2024 12th International Symposium on Digital Forensics and Security (ISDFS), 1-6
  • Bai, Y., Yu, J., Yang, S., & Ning, J. (2024). An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. Biosystems Engineering, 237, 1-12.
  • Balambar, Ş., Karimi, Z. K., Öztürk, F., Acet, Ş. B., & Pekkan, Ö. I. (2021). Uzaktan algılama tekniklerinden yararlanarak tarımsal faliyetlerin izlenmesi. GSI Journals Serie C: Advancements in Information Sciences and Technologies, 4(2), 58-79.
  • Chakraborty, S. K., Chandel, N. S., Jat, D., Tiwari, M. K., Rajwade, Y. A., & Subeesh, A. (2022). Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Computing and Applications, 34(23), 20539-20573.
  • Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. (2023). Available online: https://github.com/ultralytics/ultralytics (accessed on 04 September 2024).
  • Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. (2019). Deep learning for real-time fruit detection and orchard fruit load prediction: Benchmarking of ‘MangoYOLO’. Precis. Agric. 20, 1107–1135.
  • Paul, A., Machavaram, R., Kumar, D., & Nagar, H. (2024). Smart solutions for capsicum Harvesting: Unleashing the power of YOLO for Detection, Segmentation, growth stage Classification, Counting, and real-time mobile identification. Computers and Electronics in Agriculture, 219, 108832.
  • Sneha, N., Sundaram, M., & Ranjan, R. (2024). Acre-Scale Grape Bunch Detection and Predict Grape Harvest Using YOLO Deep Learning Network. SN Computer Science, 5(2), 250.
  • Subeesh, A., Kumar, S. P., Chakraborty, S. K., Upendar, K., Chandel, N. S., Jat, D., Dubey, K., Modi, R.U., Khan, M. M. (2024). UAV imagery coupled deep learning approach for the development of an adaptive in-house web-based application for yield estimation in citrus orchard. Measurement, 234, 114786.
  • Sun, J., Zhou, J., He, Y., Jia, H., & Rottok, L. T. (2024). Detection of rice panicle density for unmanned harvesters via RP-YOLO. Computers and Electronics in Agriculture, 226, 109371.
  • Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A comprehensive review of yolo architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-nas. Machine Learning and Knowledge Extraction, 5(4), 1680-1716.
  • Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., & Liang, Z. (2019). Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and electronics in agriculture, 157, 417-426.
  • Wang, Z. (2024, May). Enhanced Fire Detection Algorithm for Chemical Plants Using Modified YOLOv9 Architecture. In 2024 9th International Conference on Electronic Technology and Information Science (ICETIS), 22-25.
  • Yang, S., Cao, Z., Liu, N., Sun, Y., & Wang, Z. (2024). Maritime Electro-Optical Image Object Matching Based on Improved YOLOv9. Electronics, 13(14), 2774.
  • Yıldırım, Ş., & Ulu, B. (2023). Deep learning-based apples counting for yield forecast using proposed flying robotic system. Sensors, 23(13), 6171.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mekatronik Mühendisliği
Bölüm Makaleler
Yazarlar

Furkan Sönmez 0009-0003-8216-8463

Polat Ashyrov 0009-0009-4073-239X

Hayrettin Toylan 0000-0001-8542-7254

Proje Numarası 2209A
Erken Görünüm Tarihi 4 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Ekim 2024
Kabul Tarihi 2 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Sönmez, F., Ashyrov, P., & Toylan, H. (2025). Yield Prediction with Deep Learning on UAV Images: Banana tree application. Kirklareli University Journal of Engineering and Science, 11(1), 11-22. https://doi.org/10.34186/klujes.1560553