Derleme
BibTex RIS Kaynak Göster

Hız Temelli Direnç Antrenmanı ve Spor Performansı: Kavramsal ve Uygulamalı Yaklaşımlar

Yıl 2025, Cilt: 2 Sayı: 2, 19 - 33, 17.10.2025

Öz

Hız temelli direnç antrenmanı (Velocity-Based Training; VBT), yüklenmenin bireysel farklılıklara göre ayarlanması ve performans adaptasyonlarının sistematik olarak izlenmesi açısından giderek daha fazla önem kazanmaktadır. Buna karşılık, geleneksel bir yöntem olan yüzdeye dayalı antrenman (Percentage-Based Training; PBT), sporcuların günlük hazırbulunuşluk düzeylerindeki değişkenlikleri her zaman yeterince yansıtamadığından, antrenman sürecinin verimliliğini sınırlayabilmektedir. Bu derleme çalışmasının amacı, VBT’nin kuramsal arka planını, yöntemsel yaklaşımlarını ve pratikteki uygulama boyutlarını bütüncül bir bakış açısıyla değerlendirmektir. 2009–2024 yılları arasında PubMed, Scopus, Web of Science ve SPORTDiscus veri tabanlarında gerçekleştirilen sistematik tarama sonucunda ulaşılan 30 yayından, kriterleri karşılayan 10 çalışma nitel senteze dâhil edilmiştir. Bulgular, düşük hız kaybı eşiklerinin (VL ≤%20) kuvvet ve güç performansında anlamlı gelişmelerle ilişkili olduğunu; yüksek eşiklerin (VL ≥%30) ise nöromüsküler yorgunluğu artırmak pahasına hipertrofiyi destekleyebildiğini göstermektedir. VBT, günlük performans hazırbulunuşluğunu değerlendirme açısından PBT’ye kıyasla daha hassas bir yöntem olarak öne çıkmaktadır. Bununla birlikte, cihaz maliyetleri, erişilebilirlik sorunları ve ölçüm geçerliliğine ilişkin sınırlılıklar, yöntemin saha uygulamalarında yaygın olarak kullanılmasını kısıtlamaktadır. Sonuç olarak, VBT, direnç antrenmanlarının optimize edilmesine yönelik işlevsel bir bilimsel çerçeve sunmaktadır. Gelecekte yapılacak çalışmaların farklı sporcu popülasyonlarını kapsaması, VBT’nin PBT ile hibrit modellerde entegrasyonunun incelenmesi ve maliyet-etkin teknolojik çözümler üzerine yoğunlaşması önerilmektedir.

Kaynakça

  • Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—a scale for the quality assessment of narrative review articles. Research Integrity and Peer Review, 4(5), 1–7. https://doi.org/10.1186/s41073-019-0064-8
  • Balsalobre-Fernández, C., Kuzdub, M., Poveda-Ortiz, P., & Campo-Vecino, J. D. (2016). Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. Journal of Strength and Conditioning Research, 30(7), 1968–1974. https://doi.org/10.1519/JSC.0000000000001284
  • Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. Journal of Strength and Conditioning Research, 31(7), 1897–1904. https://doi.org/10.1519/JSC.0000000000001657
  • Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2021). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. Journal of Strength and Conditioning Research, 35(1), 46–53. https://doi.org/10.1519/JSC.0000000000002726
  • Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. International Journal of Sports Physiology and Performance, 14(2), 246–255. https://doi.org/10.1123/ijspp.2018-0147
  • Banyard, H. G., Tufano, J. J., Weakley, J. J. S., Wu, S., Jukic, I., & Nosaka, K. (2021). Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1RM percentage-based training. International Journal of Sports Physiology and Performance, 16(2), 232–242. https://doi.org/10.1123/ijspp.2019-0999
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. Journal of Strength and Conditioning Research, 34(1), 46–53. https://doi.org/10.1519/JSC.0000000000003089
  • Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
  • González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International Journal of Sports Medicine, 31(5), 347–352. https://doi.org/10.1055/s-0030-1248333
  • González-Badillo, J. J., Marín, P. J., Pareja-Blanco, F., & Rodríguez-Rosell, D. (2015). Effect of velocity-based resistance training on young soccer players of different ages. Journal of Strength and Conditioning Research, 29(7), 2104–2111. https://doi.org/10.1519/JSC.0000000000000860
  • Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ, 9, e10942. https://doi.org/10.7717/peerj.10942
  • Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity-based strength training. Journal of Australian Strength and Conditioning, 22(2), 58–69.
  • Liao, K.-F., Wang, X.-X., Han, M.-Y., Huang, L.-Y., Ma, C.-X., Guo, Z.-X., & Wu, Y.-X. (2021). Effects of velocity-based training vs. traditional 1RM percentage-based training: A systematic review with meta-analysis. PLOS ONE, 16(11), e0259790. https://doi.org/10.1371/journal.pone.0259790
  • Loturco, I., Pereira, L. A., Kobal, R., Kitamura, K., Cal Abad, C. C., Marques, G., & Nakamura, F. Y. (2019). Training for power and speed: Effects of increasing or decreasing jump-squat velocity in elite young soccer players. Journal of Strength and Conditioning Research, 33(10), 2575–2587. https://doi.org/10.1519/JSC.0000000000002460
  • Mann, J. B., Ivey, P. A., & Sayers, S. P. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 52–57. https://doi.org/10.1519/SSC.0000000000000177
  • Orange, S. T., Hritz, A., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2022). Comparison of the effects of velocity-based vs. traditional resistance training methods on strength, power, and linear sprint performance: A systematic review and meta-analysis. Journal of Sports Sciences, 40(10), 1196–1204. https://doi.org/10.1080/02640414.2022.2059320
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2017). Effect of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678
  • Pareja-Blanco, F., Sánchez-Medina, L., Suárez-Arrones, L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on performance in professional soccer players. International Journal of Sports Physiology and Performance, 12(4), 512–519. https://doi.org/10.1123/ijspp.2016-0170
  • Randell, R., Cronin, J., Keogh, J., Gill, N., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. Journal of Strength and Conditioning Research, 25(1), 87–93. https://doi.org/10.1519/JSC.0b013e3181fee634
  • Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine & Science in Sports & Exercise, 43(9), 1725–1734. https://doi.org/10.1249/MSS.0b013e318213f880
  • Sekulović, V., Jezdimirović-Stojanović, T., Andrić, N., Elizondo-Donado, A., Martin, D., Mikić, M., & Stojanović, M. D. M. (2024). Effects of in-season velocity-based vs. traditional resistance training in elite youth male soccer players. Applied Sciences, 14(20), 9192. https://doi.org/10.3390/app14209192
  • Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 45. https://doi.org/10.1186/1471-2288-8-45
  • Weakley, J. J. S., Mann, B., Banyard, H. G., McLaren, S., Scott, T., García-Ramos, A., … Cronin, J. (2020). Velocity-based training: From theory to application. Strength & Conditioning Journal, 42(2), 31–49. https://doi.org/10.1519/SSC.0000000000000539
  • Weakley, J. J. S., Morrison, M., García-Ramos, A., Johnston, R. D., Cole, M. H., Banyard, H., & Cronin, J. (2021). The validity and reliability of commercially available resistance training monitoring devices: A systematic review. Sports Medicine, 51(3), 443–502. https://doi.org/10.1007/s40279-020-01363-4
  • Weakley, J. J. S., Wilson, K. M., Till, K., Banyard, H. G., Dyson, J., Phibbs, P. J., … Jones, B. (2021). Show me, tell me, encourage me: The effect of different forms of feedback on resistance training performance. Journal of Strength and Conditioning Research, 35(11), 3151–3159. https://doi.org/10.1519/JSC.0000000000003807
  • Weakley, J. J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., & Jones, B. (2020). Show me the money: The cost of velocity-based training monitoring equipment. Strength & Conditioning Journal, 42(3), 24–34. https://doi.org/10.1519/SSC.0000000000000541
  • Zhang, M., Li, D., He, J., Liang, X., Huang, W., Zhou, Y., Sun, X., Song, W., & Shu, J. (2023). The effects of velocity-based versus percentage-based resistance training on athletic performances in sport-collegiate female basketball players. Frontiers in Physiology, 13, 992655. https://doi.org/10.3389/fphys.2022.992655
  • Zhang, X., Feng, S., Peng, R., & Li, H. (2022). The role of velocity-based training (VBT) in enhancing athletic performance in trained individuals: A meta-analysis of controlled trials. International Journal of Environmental Research and Public Health, 19(15), 9252. https://doi.org/10.3390/ijerph19159252

Velocity-Based Resistance Training and Sports Performance: Conceptual and Applied Approaches

Yıl 2025, Cilt: 2 Sayı: 2, 19 - 33, 17.10.2025

Öz

Velocity-based resistance training (VBT) has gained recognition as a sophisticated method for prescribing individualized training loads and monitoring adaptations in strength development. In contrast, the traditionally employed percentage-based training (PBT) often falls short in accounting for daily fluctuations in athletes’ neuromuscular status, which can diminish the overall effectiveness of training. The present narrative review critically examines VBT by outlining its theoretical underpinnings, methodological applications, and practical implications. A structured literature search conducted in PubMed, Scopus, Web of Science, and SPORTDiscus between 2009 and 2024 identified 30 studies, of which 10 satisfied the inclusion criteria and were subjected to qualitative synthesis. Findings demonstrate that maintaining low velocity-loss thresholds (VL ≤20%) is associated with improvements in strength and power performance, while higher thresholds (VL ≥30%) promote hypertrophic gains but concurrently increase neuromuscular fatigue. Compared to PBT, VBT exhibits greater sensitivity in detecting day-to-day variations in performance readiness. However, widespread adoption remains constrained by challenges related to equipment costs, accessibility, and measurement validity. Taken together, the evidence positions VBT as a rigorous and practically meaningful framework for optimizing resistance training. Future research directions include extending its application across broader populations, evaluating hybrid approaches that integrate VBT with PBT, and developing cost-efficient technological solutions to enhance its feasibility in applied settings.

Kaynakça

  • Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—a scale for the quality assessment of narrative review articles. Research Integrity and Peer Review, 4(5), 1–7. https://doi.org/10.1186/s41073-019-0064-8
  • Balsalobre-Fernández, C., Kuzdub, M., Poveda-Ortiz, P., & Campo-Vecino, J. D. (2016). Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. Journal of Strength and Conditioning Research, 30(7), 1968–1974. https://doi.org/10.1519/JSC.0000000000001284
  • Banyard, H. G., Nosaka, K., & Haff, G. G. (2017). Reliability and validity of the load–velocity relationship to predict the 1RM back squat. Journal of Strength and Conditioning Research, 31(7), 1897–1904. https://doi.org/10.1519/JSC.0000000000001657
  • Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2021). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. Journal of Strength and Conditioning Research, 35(1), 46–53. https://doi.org/10.1519/JSC.0000000000002726
  • Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. International Journal of Sports Physiology and Performance, 14(2), 246–255. https://doi.org/10.1123/ijspp.2018-0147
  • Banyard, H. G., Tufano, J. J., Weakley, J. J. S., Wu, S., Jukic, I., & Nosaka, K. (2021). Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1RM percentage-based training. International Journal of Sports Physiology and Performance, 16(2), 232–242. https://doi.org/10.1123/ijspp.2019-0999
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. Journal of Strength and Conditioning Research, 34(1), 46–53. https://doi.org/10.1519/JSC.0000000000003089
  • Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115. https://doi.org/10.1111/j.1365-2648.2007.04569.x
  • González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International Journal of Sports Medicine, 31(5), 347–352. https://doi.org/10.1055/s-0030-1248333
  • González-Badillo, J. J., Marín, P. J., Pareja-Blanco, F., & Rodríguez-Rosell, D. (2015). Effect of velocity-based resistance training on young soccer players of different ages. Journal of Strength and Conditioning Research, 29(7), 2104–2111. https://doi.org/10.1519/JSC.0000000000000860
  • Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ, 9, e10942. https://doi.org/10.7717/peerj.10942
  • Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity-based strength training. Journal of Australian Strength and Conditioning, 22(2), 58–69.
  • Liao, K.-F., Wang, X.-X., Han, M.-Y., Huang, L.-Y., Ma, C.-X., Guo, Z.-X., & Wu, Y.-X. (2021). Effects of velocity-based training vs. traditional 1RM percentage-based training: A systematic review with meta-analysis. PLOS ONE, 16(11), e0259790. https://doi.org/10.1371/journal.pone.0259790
  • Loturco, I., Pereira, L. A., Kobal, R., Kitamura, K., Cal Abad, C. C., Marques, G., & Nakamura, F. Y. (2019). Training for power and speed: Effects of increasing or decreasing jump-squat velocity in elite young soccer players. Journal of Strength and Conditioning Research, 33(10), 2575–2587. https://doi.org/10.1519/JSC.0000000000002460
  • Mann, J. B., Ivey, P. A., & Sayers, S. P. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 52–57. https://doi.org/10.1519/SSC.0000000000000177
  • Orange, S. T., Hritz, A., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2022). Comparison of the effects of velocity-based vs. traditional resistance training methods on strength, power, and linear sprint performance: A systematic review and meta-analysis. Journal of Sports Sciences, 40(10), 1196–1204. https://doi.org/10.1080/02640414.2022.2059320
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678
  • Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2017). Effect of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678
  • Pareja-Blanco, F., Sánchez-Medina, L., Suárez-Arrones, L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on performance in professional soccer players. International Journal of Sports Physiology and Performance, 12(4), 512–519. https://doi.org/10.1123/ijspp.2016-0170
  • Randell, R., Cronin, J., Keogh, J., Gill, N., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. Journal of Strength and Conditioning Research, 25(1), 87–93. https://doi.org/10.1519/JSC.0b013e3181fee634
  • Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine & Science in Sports & Exercise, 43(9), 1725–1734. https://doi.org/10.1249/MSS.0b013e318213f880
  • Sekulović, V., Jezdimirović-Stojanović, T., Andrić, N., Elizondo-Donado, A., Martin, D., Mikić, M., & Stojanović, M. D. M. (2024). Effects of in-season velocity-based vs. traditional resistance training in elite youth male soccer players. Applied Sciences, 14(20), 9192. https://doi.org/10.3390/app14209192
  • Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 45. https://doi.org/10.1186/1471-2288-8-45
  • Weakley, J. J. S., Mann, B., Banyard, H. G., McLaren, S., Scott, T., García-Ramos, A., … Cronin, J. (2020). Velocity-based training: From theory to application. Strength & Conditioning Journal, 42(2), 31–49. https://doi.org/10.1519/SSC.0000000000000539
  • Weakley, J. J. S., Morrison, M., García-Ramos, A., Johnston, R. D., Cole, M. H., Banyard, H., & Cronin, J. (2021). The validity and reliability of commercially available resistance training monitoring devices: A systematic review. Sports Medicine, 51(3), 443–502. https://doi.org/10.1007/s40279-020-01363-4
  • Weakley, J. J. S., Wilson, K. M., Till, K., Banyard, H. G., Dyson, J., Phibbs, P. J., … Jones, B. (2021). Show me, tell me, encourage me: The effect of different forms of feedback on resistance training performance. Journal of Strength and Conditioning Research, 35(11), 3151–3159. https://doi.org/10.1519/JSC.0000000000003807
  • Weakley, J. J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., & Jones, B. (2020). Show me the money: The cost of velocity-based training monitoring equipment. Strength & Conditioning Journal, 42(3), 24–34. https://doi.org/10.1519/SSC.0000000000000541
  • Zhang, M., Li, D., He, J., Liang, X., Huang, W., Zhou, Y., Sun, X., Song, W., & Shu, J. (2023). The effects of velocity-based versus percentage-based resistance training on athletic performances in sport-collegiate female basketball players. Frontiers in Physiology, 13, 992655. https://doi.org/10.3389/fphys.2022.992655
  • Zhang, X., Feng, S., Peng, R., & Li, H. (2022). The role of velocity-based training (VBT) in enhancing athletic performance in trained individuals: A meta-analysis of controlled trials. International Journal of Environmental Research and Public Health, 19(15), 9252. https://doi.org/10.3390/ijerph19159252
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Antrenman
Bölüm Derlemeler
Yazarlar

Yasin Gökşin 0000-0001-9287-4941

Ömercan Göksu 0000-0003-3504-5818

Yayımlanma Tarihi 17 Ekim 2025
Gönderilme Tarihi 9 Eylül 2025
Kabul Tarihi 26 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 2

Kaynak Göster

APA Gökşin, Y., & Göksu, Ö. (2025). Velocity-Based Resistance Training and Sports Performance: Conceptual and Applied Approaches. KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ULUSLARARASI BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ, 2(2), 19-33.