Derleme
BibTex RIS Kaynak Göster

Privacy-Preserving Wireless Indoor Localization Systems

Yıl 2023, , 114 - 128, 30.11.2023
https://doi.org/10.34088/kojose.1098804

Öz

Recently the number of buildings and interior spaces has increased, and many systems have been proposed to locate people or objects in these environments. At present, several technologies, such as GPS, Bluetooth, Wi-Fi, Ultrasound, and RFID, are used for positioning problems. Some of these technologies provide good results for positioning outdoors whereas some others are effective for indoor environments. While GPS is used for outdoor localization systems, Wi-Fi, Bluetooth, Ultra WideBand, and RFID are used for indoor localization systems (ILSs). Today, due to the proliferation and extensive usage of Wi-Fi access points, wireless-based technologies in indoor localization are preferred more than others. However, even though the abovementioned technologies make life easier for their users, ILSs can pose some privacy risks in case the confidentiality of the location data cannot be ensured. Such an incident is highly likely to result in the disclosure of users’ identities and behavior patterns. In this paper, we aim to investigate existing privacy-preserving wireless ILSs and discuss them.

Kaynakça

  • [1] Alinsavath K.N., Nugroho L.E., and Hamamoto K., 2019. The Seamlessness of Outdoor and Indoor Localization Approaches based on a Ubiquitous Computing Environment: A Survey. In Proceedings of the 2019 2nd International Conference on Information Science and Systems, Tokyo, 16-19 March, pp. 316-324.
  • [2] Sakpere W., Adeyeye-Oshin M., Mlitwa N.B., 2017. A state-of-the-art survey of indoor positioning and navigation systems and technologies. South African Computer Journal, 29(3), pp. 145-197.
  • [3] Zafari F., Gkelias A., Leung K.K., 2019. A survey of indoor localization systems and technologies. IEEE Communications Surveys and Tutorials, 21(3), pp. 2568-2599.
  • [4] Yassin A., Nasser Y., Awad M., Al-Dubai A., Liu R., Yuen C., Aboutanios E., 2016. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Communications Surveys and Tutorials, 19(2), pp. 1327-1346.
  • [5] Rahman A. B. M., Li T., Wang, Y., 2020. Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors, 20(5), pp. 1382.
  • [6] Morar A., Moldoveanu A., Mocanu I., Moldoveanu F., Radoi I. E., Asavei V., Butean, A., 2020. A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision. Sensors, 20(9), 2641.
  • [7] Liu M., Cheng L., Qian K., Wang J., Wang J., and Liu, Y., 2020. Indoor acoustic localization: a survey. Human-Centric Computing and Information Sciences, 10(1), pp. 1-24.
  • [8] Gaber H., Marey M., Amin S., Tolba M.F., 2020. Localization and Mapping for Indoor Navigation: Survey. In Robotic Systems: Concepts, Methodologies, Tools, and Applications, 1, pp.930-954.
  • [9] Bai X., Huang M., Prasad N. R., Mihovska A.D., 2019. A Survey of Image-Based Indoor Localization using Deep Learning. In 2019 22nd International Symposium on Wireless Personal Multimedia Communications, Lisbon, 24-27 November, pp. 1-6.
  • [10] Gu F., Hu X., Ramezani M., Acharya D., Khoshelham K., Valaee S., Shang J., 2019. Indoor localization improved by spatial context—A survey. ACM Computing surveys (CSUR), 52(3), pp. 1-35.
  • [11] Mieth C., Humbeck P., Herzwurm G., 2019. A Survey on the Potentials of Indoor Localization Systems in Production. In Interdisciplinary Conference on Production, Logistics and Traffic, Dortmund, pp. 42-154.
  • [12] Sumitra I. D., Supatmi S., Hou R., 2018. Enhancement of Indoor Localization Algorithms in Wireless Sensor Networks: A Survey. In IOP Conference Series: Materials Science and Engineering, 407(1), pp. 1-8.
  • [13] Liu Y., Liu W., Luo, X., 2018. Survey on the Indoor Localization Technique of Wi-Fi Access Points. International Journal of Digital Crime and Forensics (IJDCF), 10(3), pp. 27-42.
  • [14] Zhou M., Bulgantamir O., Wang, Y., 2018. Highly Available Localization Techniques in Indoor Wi-Fi Environment: A Comprehensive Survey. In International Conference on Machine Learning and Intelligent Communications, Hangzhou, pp. 460-469.
  • [15] Zhou X., Chen T., Guo D., Teng X., Yuan B., 2018. From one to crowd: A survey on crowdsourcing-based wireless indoor localization. Frontiers of Computer Science, 12(3), pp. 423-450.
  • [16] Zakhary S., Benslimane A., 2018. On location-privacy in opportunistic mobile networks, a survey. Journal of Network and Computer Applications, 103, pp. 157-170.
  • [17] Brena R. F., García-Vázquez J. P., Galván-Tejada C. E., Muñoz-Rodriguez D., Vargas-Rosales C., and Fangmeyer J., 2017. Evolution of indoor positioning technologies: A survey. Journal of Sensors, 2017.
  • [18] Samu G. W., Kadam P., 2017. Survey on Indoor Localization: Evaluation Performance of Bluetooth Low Energy and Fingerprinting Based Indoor Localization System. International Journal of Computer Engineering & Technology (IJCET), 8(6), pp. 23-35.
  • [19] Basri C., El Khadimi A., 2016. Survey on indoor localization system and recent advances of Wi-Fi fingerprinting technique. In 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakesh, pp. 253-259.
  • [20] Xiao J., Zhou Z., Yi Y., Ni L. M., 2016. A survey on wireless indoor localization from the device perspective. ACM Computing surveys (CSUR), 49(2), pp. 1-31.
  • [21] Khudhair A. A., Jabbar S. Q., Sulttan M. Q., Wang, D., 2016. Wireless indoor localization systems and techniques: survey and comparative study. Indonesian Journal of Electrical Engineering and Computer Science, 3(2), pp. 392-409.
  • [22] Kim C. M., Jang B., 2016. “Indoor Localization Technology Survey”, Journal of The Korea Society of Computer and Information, 21(1), pp. 17-24.
  • [23] Stojkoska B. R., Kosovic I. N., Jagust T., 2016. “A Survey of Indoor Localization Techniques for Smartphones. Web Proceedings of ICT Innovations, Ohrid, pp. 11-22.
  • [24] Pei L., Zhang M., Zou D., Chen R., Chen Y., 2016. A survey of crowd sensing opportunistic signals for indoor localization. Mobile Information Systems, 2016, pp. 1-16.
  • [25] Xi R., Li Y. J., Hou M. S., 2016. Survey on indoor localization. Computer Science, 43(4), pp. 1-6.
  • [26] Yang Z., Wu C., Zhou Z., Zhang X., Wang X., Liu Y., 2015. Mobility increases localizability: A on wireless indoor localization using inertial sensors. ACM Computing Surveys (Csur), 47(3), pp. 1-34.
  • [27] Shandilya S., Idate S. R., 2015. Survey on Localization of Smartphone User in an Indoor Environment Using Wi-Fi and Navigation through Layout of the Floor Plans. International Journal of Innovative Research in Computer and Communication Engineering, 3(5), pp. 3784-3789.
  • [28] Minmin C., 2015. A survey of indoor localization using Pedestrian Dead Reckoning. Microcomputer & Its Applications, 13, pp. 9-11.
  • [29] Ji H., Xie L., Wang C., Yin Y., Lu S., 2015. CrowdSensing: A crowd-sourcing based indoor navigation using RFID-based delay tolerant network. Journal of Network and Computer Applications, 52, pp. 79-89.
  • [30] Luo C., Hong H., Cheng L., Chan M. C., Li J., Ming Z., 2016. Accuracy-aware wireless indoor localization: Feasibility and applications. Journal of Network and Computer Applications, 62, pp. 128-136.
  • [31] Bianchi V., Ciampolini P., De Munari I., 2018. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 68(2), pp. 566-575.
  • [32] Ni L. M., Zhang D., Souryal M.R., 2011. RFID-based localization and tracking technologies. IEEE Wireless Communications, 18(2), pp. 45-51.
  • [33] García E., Poudereux P., Hernández Á., Ureña J., Gualda D., 2015. A robust UWB indoor positioning system for highly complex environments. In 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, pp. 3386-3391.
  • [34] Hassan N. U., Naeem A., Pasha M. A., Jadoon T., and Yuen C., 2015. Indoor positioning using visible led lights: A survey. ACM Computing Surveys (CSUR), 48(2), pp. 1-32.
  • [35] Moutinho J. N., Araújo R. E., Freitas D., “Indoor localization with audible sound—Towards practical implementation. Pervasive and Mobile Computing, 29, pp. 1-16.
  • [36] Luo X., O’Brien W. J., Julien C.L., 2011. Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites. Advanced Engineering Informatics, 25(2), pp. 355-363.
  • [37] Kulshrestha T., Saxena D., Niyogi R., Raychoudhury V., Misra M., 2017. SmartITS: Smartphone-based identification and tracking using seamless indoor-outdoor localization. Journal of Network and Computer Applications, 98, pp. 97-113.
  • [38] Al-Ammar M. A., Alhadhrami S., Al-Salman A., Alarifi A., Al-Khalifa H. S., Alnafessah A., Alsaleh, M., 2014. Comparative survey of indoor positioning technologies, techniques, and algorithms. In 2014 International Conference on Cyberworlds, Cantabria, pp. 45-252.
  • [39] Zegeye W. K., Amsalu S. B., Astatke Y., Moazzami, F., 2016. WiFi RSS fingerprinting indoor localization for mobile devices”. In 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, pp. 1-6.
  • [40] Li H., Sun L., Zhu H., Lu X., Cheng, X., 2014. Achieving privacy preservation in WiFi fingerprint-based localization. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, pp. 2337-2345.
  • [41] Ziegeldorf J. H., Viol N., Henze M., Wehrle K., 2014. Poster: Privacy-preserving indoor localization. 7th ACM Conference on Security & Privacy in Wireless and Mobile Networks (WiSec'14), Oxford, pp. 1-2.
  • [42] Nieminen R., Järvinen K., 2020. Practical Privacy-Preserving Indoor Localization based on Secure Two-Party Computation. IEEE Transactions on Mobile Computing, 20, pp. 2877-2890.
  • [43] Zhang G., Zhang A., Zhao P., Sun, J., 2020. Lightweight Privacy-Preserving Scheme in Wi-Fi Fingerprint-Based Indoor Localization. IEEE Systems Journal, 14(3), pp. 4638-4647.
  • [44] Wang W., Gong Z., Zhang J., Lu H., Ku W. S., 2019. On Location Privacy in Fingerprinting-based Indoor Positioning System: An Encryption Approach. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, pp. 289-298.
  • [45] Eshun S. N., Palmieri P., 2019. A privacy- preserving protocol for indoor Wi-Fi localization. In Proceedings of the 16th ACM International Conference on Computing Frontiers, Alghero, pp. 380-385.
  • [46] Järvinen K., Leppäkoski H., Lohan E. S., Richter P., Schneider T., Tkachenko O., Yang Z., 2019. PILOT: practical privacy-preserving indoor localization using outsourcing. In 2019 IEEE European Symposium on Security and Privacy (EuroSandP), Stockholm, pp. 448-463.
  • [47] Zhang X., Chen Q., Peng X., Jiang X., 2019. Differential Privacy-Based Indoor Localization Privacy Protection in Edge Computing. In 2019 IEEE (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, pp. 491-496.
  • [48] Yang Z., Järvinen K., 2019. Towards Modeling Privacy in WiFi Fingerprinting Indoor Localization and its Application. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 10(1), pp. 4-22.
  • [49] Zhao P., Jiang H., Lui J. C., Wang C., Zeng F., Xiao F., Li Z., 2018. P3-LOC: A privacy-preserving paradigm-driven framework for indoor localization. IEEE/ACM Transactions on Networking, 26(6), pp. 2856-2869.
  • [50] Alikhani N., Moghtadaiee V., Sazdar A. M., Ghorashi S. A., 2018. A Privacy Preserving Method for Crowdsourcing in Indoor Fingerprinting Localization. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Iran, pp. 58-62.
  • [51] Wang Y., Huang M., Jin Q., Ma J., 2018. DP3: A differential privacy-based privacy-preserving indoor localization mechanism. IEEE Communications Letters, 22(12), pp. 2547-2550.
  • [52] Altintas B., Tacha, S., 2011. Improving RSS-based indoor positioning algorithm via k-means clustering. 17th European Wireless 2011-Sustainable Wireless Technologies. VDE, Vienna, pp. 1-5.
  • [53] Halder S., Ghosal A., 2016. A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, pp. 82-94.
  • [54] Motroni A., Buffi A., Nepa P., 2021. A survey on indoor vehicle localization through RFID technology. IEEE Access, 9, pp. 17921-17942.
  • [55] Obeidat H., Shuaieb W., Obeidat O., Abd-Alhameed R., 2021. A review of indoor localization techniques and wireless technologies. Wireless Personal Communications, 119(1), pp. 289-327.
  • [56] Roy P., Chowdhury C., 2021. A survey of machine learning techniques for indoor localization and navigation systems. Journal of Intelligent & Robotic Systems, 101(3), pp. 1-34.
  • [57] Singh N., Choe S., Punmiya R., 2021. Machine learning based indoor localization using Wi-Fi RSSI fingerprints: an overview. IEEE Access, 9, pp. 127150 – 127174.
  • [58] Yang T., Cabani A., Chafouk H., 2021. A Survey of Recent Indoor Localization Scenarios and Methodologies. Sensors, 21(23), 8086.
  • [59] Ouyang G., Abed-Meraim K., 2022. Survey of Magnetic-Field-Based Indoor Localization. Electronics, 11(6), 864.
  • [60] Farahsari P. S., Farahzadi A., Rezazadeh J., Bagheri A., 2022. A Survey on Indoor Positioning Systems for IoT-based Applications. IEEE Internet of Things Journal, 9(10), pp. 7680-7699.
  • [61] Roy P., Chowdhury C., 2022. A survey on ubiquitous WiFi-based indoor localization system for smartphone users from implementation perspectives. CCF Transactions on Pervasive Computing and Interaction, pp. 1-21.
  • [62] Sorour S., Lostanlen Y., Valaee S., Majeed K., 2015. Joint indoor localization and radio map construction with limited deployment load. IEEE Trans. Mobile Comput., 14(5), pp. 1031-1043.
  • [63] Gu Z., Chen Z., Zhang Y., Zhu Y., Lu M., Chen A., 2016. Reducing fingerprint collection for indoor localization. Comput. Commun., 83, pp. 56-63.
  • [64] Lee W. H., Ozger M., Challita U., Sung K.W., 2021. Noise learning based denoising autoencoder. In IEEE Communications Letters, 25(9), pp. 2983-2987.
  • [65] Jia B., Huang B., Gao H., Li W., 2018. Dimension reduction in radio maps based on the supervised kernel principal component analysis. Soft Comput., 22(23), pp. 7697-7703.
  • [66] Lian L., Xia S., Zhang S., Wu Q., Jing C., 2019. Improved indoor positioning algorithm using KPCA and ELM. In Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP), 23-25 October, pp. 1-5.
  • [67] Imran S., Ko Y. B., 2018. A novel indoor positioning system using kernel local discriminant analysis in Internet-of-Things. Wireless Commun. Mobile Comput., 2018, pp. 1-9.
  • [68] Adege A., Lin H. P., Tarekegn G., Jeng S. S., 2018. Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Appl. Sci., 8(7), 1062.
  • [69] Lopez-de-Teruel P., Canovas O., Garcia F. J., 2017. Using dimensionality reduction techniques for refining passive indoor positioning systems based on radio fingerprinting,'' Sensors, 17(4), 871.
  • [70] Bengio Y., 2012. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks Trade. Berlin, Germany: Springer, 2012, pp. 437-478.
  • [71] Bruha I., Famili A., 2000. Postprocessing in machine learning and data mining. ACM SIGKDD Explor. Newslett., 2(2), pp. 110-114.
  • [72] Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., He Q., 2021. A comprehensive survey on transfer learning. Proc. IEEE, 109(1), pp. 43-76.
  • [73] Sazdar A. M., Alikhani N., Ghorashi S. A., Khonsari A., 2021. Privacy preserving in indoor fingerprint localization and radio map expansion. Peer-to-Peer Networking and Applications, 14(1), pp. 121-134.
  • [74] Wang Z., Xu Y., Yan Y., Zhang Y., Rao Z., Ouyang X, 2022. Privacy-preserving indoor localization based on inner product encryption in a cloud environment. Knowledge-Based Systems, 239, 108005.
  • [75] van der Beets C., Nieminen R., Schneider T., 2022. FAPRIL: Towards Faster Privacy-Preserving Fingerprint-Based Localization. In: SECRYPT. 2022.
  • [76] Zhang X., He F., Chen Q., Jiang X., Bao J., Ren T., Du X., 2022. A differentially private indoor localization scheme with fusion of WiFi and bluetooth fingerprints in edge computing. Neural Computing and Applications, 34, pp. 4111–4132.
  • [77] Hu Z., Li Y., Jiang G., Zhang R., Xie M., 2022. PriHorus: Privacy-Preserving RSS-Based Indoor Positioning. In ICC 2022-IEEE International Conference on Communications, pp. 5627-5632.
Yıl 2023, , 114 - 128, 30.11.2023
https://doi.org/10.34088/kojose.1098804

Öz

Kaynakça

  • [1] Alinsavath K.N., Nugroho L.E., and Hamamoto K., 2019. The Seamlessness of Outdoor and Indoor Localization Approaches based on a Ubiquitous Computing Environment: A Survey. In Proceedings of the 2019 2nd International Conference on Information Science and Systems, Tokyo, 16-19 March, pp. 316-324.
  • [2] Sakpere W., Adeyeye-Oshin M., Mlitwa N.B., 2017. A state-of-the-art survey of indoor positioning and navigation systems and technologies. South African Computer Journal, 29(3), pp. 145-197.
  • [3] Zafari F., Gkelias A., Leung K.K., 2019. A survey of indoor localization systems and technologies. IEEE Communications Surveys and Tutorials, 21(3), pp. 2568-2599.
  • [4] Yassin A., Nasser Y., Awad M., Al-Dubai A., Liu R., Yuen C., Aboutanios E., 2016. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Communications Surveys and Tutorials, 19(2), pp. 1327-1346.
  • [5] Rahman A. B. M., Li T., Wang, Y., 2020. Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors, 20(5), pp. 1382.
  • [6] Morar A., Moldoveanu A., Mocanu I., Moldoveanu F., Radoi I. E., Asavei V., Butean, A., 2020. A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision. Sensors, 20(9), 2641.
  • [7] Liu M., Cheng L., Qian K., Wang J., Wang J., and Liu, Y., 2020. Indoor acoustic localization: a survey. Human-Centric Computing and Information Sciences, 10(1), pp. 1-24.
  • [8] Gaber H., Marey M., Amin S., Tolba M.F., 2020. Localization and Mapping for Indoor Navigation: Survey. In Robotic Systems: Concepts, Methodologies, Tools, and Applications, 1, pp.930-954.
  • [9] Bai X., Huang M., Prasad N. R., Mihovska A.D., 2019. A Survey of Image-Based Indoor Localization using Deep Learning. In 2019 22nd International Symposium on Wireless Personal Multimedia Communications, Lisbon, 24-27 November, pp. 1-6.
  • [10] Gu F., Hu X., Ramezani M., Acharya D., Khoshelham K., Valaee S., Shang J., 2019. Indoor localization improved by spatial context—A survey. ACM Computing surveys (CSUR), 52(3), pp. 1-35.
  • [11] Mieth C., Humbeck P., Herzwurm G., 2019. A Survey on the Potentials of Indoor Localization Systems in Production. In Interdisciplinary Conference on Production, Logistics and Traffic, Dortmund, pp. 42-154.
  • [12] Sumitra I. D., Supatmi S., Hou R., 2018. Enhancement of Indoor Localization Algorithms in Wireless Sensor Networks: A Survey. In IOP Conference Series: Materials Science and Engineering, 407(1), pp. 1-8.
  • [13] Liu Y., Liu W., Luo, X., 2018. Survey on the Indoor Localization Technique of Wi-Fi Access Points. International Journal of Digital Crime and Forensics (IJDCF), 10(3), pp. 27-42.
  • [14] Zhou M., Bulgantamir O., Wang, Y., 2018. Highly Available Localization Techniques in Indoor Wi-Fi Environment: A Comprehensive Survey. In International Conference on Machine Learning and Intelligent Communications, Hangzhou, pp. 460-469.
  • [15] Zhou X., Chen T., Guo D., Teng X., Yuan B., 2018. From one to crowd: A survey on crowdsourcing-based wireless indoor localization. Frontiers of Computer Science, 12(3), pp. 423-450.
  • [16] Zakhary S., Benslimane A., 2018. On location-privacy in opportunistic mobile networks, a survey. Journal of Network and Computer Applications, 103, pp. 157-170.
  • [17] Brena R. F., García-Vázquez J. P., Galván-Tejada C. E., Muñoz-Rodriguez D., Vargas-Rosales C., and Fangmeyer J., 2017. Evolution of indoor positioning technologies: A survey. Journal of Sensors, 2017.
  • [18] Samu G. W., Kadam P., 2017. Survey on Indoor Localization: Evaluation Performance of Bluetooth Low Energy and Fingerprinting Based Indoor Localization System. International Journal of Computer Engineering & Technology (IJCET), 8(6), pp. 23-35.
  • [19] Basri C., El Khadimi A., 2016. Survey on indoor localization system and recent advances of Wi-Fi fingerprinting technique. In 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakesh, pp. 253-259.
  • [20] Xiao J., Zhou Z., Yi Y., Ni L. M., 2016. A survey on wireless indoor localization from the device perspective. ACM Computing surveys (CSUR), 49(2), pp. 1-31.
  • [21] Khudhair A. A., Jabbar S. Q., Sulttan M. Q., Wang, D., 2016. Wireless indoor localization systems and techniques: survey and comparative study. Indonesian Journal of Electrical Engineering and Computer Science, 3(2), pp. 392-409.
  • [22] Kim C. M., Jang B., 2016. “Indoor Localization Technology Survey”, Journal of The Korea Society of Computer and Information, 21(1), pp. 17-24.
  • [23] Stojkoska B. R., Kosovic I. N., Jagust T., 2016. “A Survey of Indoor Localization Techniques for Smartphones. Web Proceedings of ICT Innovations, Ohrid, pp. 11-22.
  • [24] Pei L., Zhang M., Zou D., Chen R., Chen Y., 2016. A survey of crowd sensing opportunistic signals for indoor localization. Mobile Information Systems, 2016, pp. 1-16.
  • [25] Xi R., Li Y. J., Hou M. S., 2016. Survey on indoor localization. Computer Science, 43(4), pp. 1-6.
  • [26] Yang Z., Wu C., Zhou Z., Zhang X., Wang X., Liu Y., 2015. Mobility increases localizability: A on wireless indoor localization using inertial sensors. ACM Computing Surveys (Csur), 47(3), pp. 1-34.
  • [27] Shandilya S., Idate S. R., 2015. Survey on Localization of Smartphone User in an Indoor Environment Using Wi-Fi and Navigation through Layout of the Floor Plans. International Journal of Innovative Research in Computer and Communication Engineering, 3(5), pp. 3784-3789.
  • [28] Minmin C., 2015. A survey of indoor localization using Pedestrian Dead Reckoning. Microcomputer & Its Applications, 13, pp. 9-11.
  • [29] Ji H., Xie L., Wang C., Yin Y., Lu S., 2015. CrowdSensing: A crowd-sourcing based indoor navigation using RFID-based delay tolerant network. Journal of Network and Computer Applications, 52, pp. 79-89.
  • [30] Luo C., Hong H., Cheng L., Chan M. C., Li J., Ming Z., 2016. Accuracy-aware wireless indoor localization: Feasibility and applications. Journal of Network and Computer Applications, 62, pp. 128-136.
  • [31] Bianchi V., Ciampolini P., De Munari I., 2018. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 68(2), pp. 566-575.
  • [32] Ni L. M., Zhang D., Souryal M.R., 2011. RFID-based localization and tracking technologies. IEEE Wireless Communications, 18(2), pp. 45-51.
  • [33] García E., Poudereux P., Hernández Á., Ureña J., Gualda D., 2015. A robust UWB indoor positioning system for highly complex environments. In 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, pp. 3386-3391.
  • [34] Hassan N. U., Naeem A., Pasha M. A., Jadoon T., and Yuen C., 2015. Indoor positioning using visible led lights: A survey. ACM Computing Surveys (CSUR), 48(2), pp. 1-32.
  • [35] Moutinho J. N., Araújo R. E., Freitas D., “Indoor localization with audible sound—Towards practical implementation. Pervasive and Mobile Computing, 29, pp. 1-16.
  • [36] Luo X., O’Brien W. J., Julien C.L., 2011. Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites. Advanced Engineering Informatics, 25(2), pp. 355-363.
  • [37] Kulshrestha T., Saxena D., Niyogi R., Raychoudhury V., Misra M., 2017. SmartITS: Smartphone-based identification and tracking using seamless indoor-outdoor localization. Journal of Network and Computer Applications, 98, pp. 97-113.
  • [38] Al-Ammar M. A., Alhadhrami S., Al-Salman A., Alarifi A., Al-Khalifa H. S., Alnafessah A., Alsaleh, M., 2014. Comparative survey of indoor positioning technologies, techniques, and algorithms. In 2014 International Conference on Cyberworlds, Cantabria, pp. 45-252.
  • [39] Zegeye W. K., Amsalu S. B., Astatke Y., Moazzami, F., 2016. WiFi RSS fingerprinting indoor localization for mobile devices”. In 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, pp. 1-6.
  • [40] Li H., Sun L., Zhu H., Lu X., Cheng, X., 2014. Achieving privacy preservation in WiFi fingerprint-based localization. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, pp. 2337-2345.
  • [41] Ziegeldorf J. H., Viol N., Henze M., Wehrle K., 2014. Poster: Privacy-preserving indoor localization. 7th ACM Conference on Security & Privacy in Wireless and Mobile Networks (WiSec'14), Oxford, pp. 1-2.
  • [42] Nieminen R., Järvinen K., 2020. Practical Privacy-Preserving Indoor Localization based on Secure Two-Party Computation. IEEE Transactions on Mobile Computing, 20, pp. 2877-2890.
  • [43] Zhang G., Zhang A., Zhao P., Sun, J., 2020. Lightweight Privacy-Preserving Scheme in Wi-Fi Fingerprint-Based Indoor Localization. IEEE Systems Journal, 14(3), pp. 4638-4647.
  • [44] Wang W., Gong Z., Zhang J., Lu H., Ku W. S., 2019. On Location Privacy in Fingerprinting-based Indoor Positioning System: An Encryption Approach. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, pp. 289-298.
  • [45] Eshun S. N., Palmieri P., 2019. A privacy- preserving protocol for indoor Wi-Fi localization. In Proceedings of the 16th ACM International Conference on Computing Frontiers, Alghero, pp. 380-385.
  • [46] Järvinen K., Leppäkoski H., Lohan E. S., Richter P., Schneider T., Tkachenko O., Yang Z., 2019. PILOT: practical privacy-preserving indoor localization using outsourcing. In 2019 IEEE European Symposium on Security and Privacy (EuroSandP), Stockholm, pp. 448-463.
  • [47] Zhang X., Chen Q., Peng X., Jiang X., 2019. Differential Privacy-Based Indoor Localization Privacy Protection in Edge Computing. In 2019 IEEE (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, pp. 491-496.
  • [48] Yang Z., Järvinen K., 2019. Towards Modeling Privacy in WiFi Fingerprinting Indoor Localization and its Application. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 10(1), pp. 4-22.
  • [49] Zhao P., Jiang H., Lui J. C., Wang C., Zeng F., Xiao F., Li Z., 2018. P3-LOC: A privacy-preserving paradigm-driven framework for indoor localization. IEEE/ACM Transactions on Networking, 26(6), pp. 2856-2869.
  • [50] Alikhani N., Moghtadaiee V., Sazdar A. M., Ghorashi S. A., 2018. A Privacy Preserving Method for Crowdsourcing in Indoor Fingerprinting Localization. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Iran, pp. 58-62.
  • [51] Wang Y., Huang M., Jin Q., Ma J., 2018. DP3: A differential privacy-based privacy-preserving indoor localization mechanism. IEEE Communications Letters, 22(12), pp. 2547-2550.
  • [52] Altintas B., Tacha, S., 2011. Improving RSS-based indoor positioning algorithm via k-means clustering. 17th European Wireless 2011-Sustainable Wireless Technologies. VDE, Vienna, pp. 1-5.
  • [53] Halder S., Ghosal A., 2016. A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, pp. 82-94.
  • [54] Motroni A., Buffi A., Nepa P., 2021. A survey on indoor vehicle localization through RFID technology. IEEE Access, 9, pp. 17921-17942.
  • [55] Obeidat H., Shuaieb W., Obeidat O., Abd-Alhameed R., 2021. A review of indoor localization techniques and wireless technologies. Wireless Personal Communications, 119(1), pp. 289-327.
  • [56] Roy P., Chowdhury C., 2021. A survey of machine learning techniques for indoor localization and navigation systems. Journal of Intelligent & Robotic Systems, 101(3), pp. 1-34.
  • [57] Singh N., Choe S., Punmiya R., 2021. Machine learning based indoor localization using Wi-Fi RSSI fingerprints: an overview. IEEE Access, 9, pp. 127150 – 127174.
  • [58] Yang T., Cabani A., Chafouk H., 2021. A Survey of Recent Indoor Localization Scenarios and Methodologies. Sensors, 21(23), 8086.
  • [59] Ouyang G., Abed-Meraim K., 2022. Survey of Magnetic-Field-Based Indoor Localization. Electronics, 11(6), 864.
  • [60] Farahsari P. S., Farahzadi A., Rezazadeh J., Bagheri A., 2022. A Survey on Indoor Positioning Systems for IoT-based Applications. IEEE Internet of Things Journal, 9(10), pp. 7680-7699.
  • [61] Roy P., Chowdhury C., 2022. A survey on ubiquitous WiFi-based indoor localization system for smartphone users from implementation perspectives. CCF Transactions on Pervasive Computing and Interaction, pp. 1-21.
  • [62] Sorour S., Lostanlen Y., Valaee S., Majeed K., 2015. Joint indoor localization and radio map construction with limited deployment load. IEEE Trans. Mobile Comput., 14(5), pp. 1031-1043.
  • [63] Gu Z., Chen Z., Zhang Y., Zhu Y., Lu M., Chen A., 2016. Reducing fingerprint collection for indoor localization. Comput. Commun., 83, pp. 56-63.
  • [64] Lee W. H., Ozger M., Challita U., Sung K.W., 2021. Noise learning based denoising autoencoder. In IEEE Communications Letters, 25(9), pp. 2983-2987.
  • [65] Jia B., Huang B., Gao H., Li W., 2018. Dimension reduction in radio maps based on the supervised kernel principal component analysis. Soft Comput., 22(23), pp. 7697-7703.
  • [66] Lian L., Xia S., Zhang S., Wu Q., Jing C., 2019. Improved indoor positioning algorithm using KPCA and ELM. In Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP), 23-25 October, pp. 1-5.
  • [67] Imran S., Ko Y. B., 2018. A novel indoor positioning system using kernel local discriminant analysis in Internet-of-Things. Wireless Commun. Mobile Comput., 2018, pp. 1-9.
  • [68] Adege A., Lin H. P., Tarekegn G., Jeng S. S., 2018. Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Appl. Sci., 8(7), 1062.
  • [69] Lopez-de-Teruel P., Canovas O., Garcia F. J., 2017. Using dimensionality reduction techniques for refining passive indoor positioning systems based on radio fingerprinting,'' Sensors, 17(4), 871.
  • [70] Bengio Y., 2012. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks Trade. Berlin, Germany: Springer, 2012, pp. 437-478.
  • [71] Bruha I., Famili A., 2000. Postprocessing in machine learning and data mining. ACM SIGKDD Explor. Newslett., 2(2), pp. 110-114.
  • [72] Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., He Q., 2021. A comprehensive survey on transfer learning. Proc. IEEE, 109(1), pp. 43-76.
  • [73] Sazdar A. M., Alikhani N., Ghorashi S. A., Khonsari A., 2021. Privacy preserving in indoor fingerprint localization and radio map expansion. Peer-to-Peer Networking and Applications, 14(1), pp. 121-134.
  • [74] Wang Z., Xu Y., Yan Y., Zhang Y., Rao Z., Ouyang X, 2022. Privacy-preserving indoor localization based on inner product encryption in a cloud environment. Knowledge-Based Systems, 239, 108005.
  • [75] van der Beets C., Nieminen R., Schneider T., 2022. FAPRIL: Towards Faster Privacy-Preserving Fingerprint-Based Localization. In: SECRYPT. 2022.
  • [76] Zhang X., He F., Chen Q., Jiang X., Bao J., Ren T., Du X., 2022. A differentially private indoor localization scheme with fusion of WiFi and bluetooth fingerprints in edge computing. Neural Computing and Applications, 34, pp. 4111–4132.
  • [77] Hu Z., Li Y., Jiang G., Zhang R., Xie M., 2022. PriHorus: Privacy-Preserving RSS-Based Indoor Positioning. In ICC 2022-IEEE International Conference on Communications, pp. 5627-5632.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

Beyhan Adanur Dedeturk 0000-0003-4983-2417

Burak Kolukisa 0000-0003-0423-4595

Samet Tonyalı 0000-0001-7799-2771

Erken Görünüm Tarihi 11 Ekim 2023
Yayımlanma Tarihi 30 Kasım 2023
Kabul Tarihi 16 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Adanur Dedeturk, B., Kolukisa, B., & Tonyalı, S. (2023). Privacy-Preserving Wireless Indoor Localization Systems. Kocaeli Journal of Science and Engineering, 6(2), 114-128. https://doi.org/10.34088/kojose.1098804