Araştırma Makalesi
BibTex RIS Kaynak Göster

Chemical Characterization of Ultra High Molecular Weight Polyethylene Based Tibial Inserts After Ethylene Oxide Sterilization

Yıl 2023, , 51 - 60, 31.05.2023
https://doi.org/10.34088/kojose.1179821

Öz

Ultra-high molecular weight polyethylene (UHMWPE) has become the gold standard for total joint replacements such as tibial inserts because of its chemical inertness, superior mechanical properties, and biocompatibility. Ethylene oxide sterilization is one of the most common and effective methods used, especially for the sterilization of polyethylene-based polymeric implants. However, variable sterilization conditions can cause a change in the chemical structure of the polymeric material, which affects its mechanical properties and lifetime. The aim of this study is to investigate whether the chemical structure of UHMWPE tibial inserts sterilized with ethylene oxide undergoing certain conditions remains the same. Chemical characterization studies were performed with Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffractometer, differential scanning calorimetry, thermogravimetric analysis, mass spectrometry and elemental analysis techniques recommended for polymeric materials in ISO 10993-8:2020 standard. According to the FTIR results, the spectra of the non-sterile and sterile tibial inserts were compared, and it was determined that the similarity between them was 99.97%. XRD results revealed that after ethylene oxide sterilization, there was no significant shift in the Bragg (1 0 0) peak. The percentages of crystallinity calculated from the fusion enthalpies determined by DSC of sterile and non-sterile samples are 54.3% and 53.3%, respectively. Characterization results revealed that there was no significant change in molecular structure, crystallinity, elemental composition of UHMWPE materials after ethylene oxide sterilization. These results can provide assurance that tibial inserts keep their physical, chemical, and mechanical properties after sterilization.

Teşekkür

Author would like to thank Kırıkkale University Scientific and Technological Researches Application and Research Center (KUBTUAM).

Kaynakça

  • [1] Park G. E., Webster T. J., 2005. A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 1, 18-29.
  • [2] Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L., 2017. Biodegradable materials and metallic implants—a review. Journal of functional biomaterials, 8, 44.
  • [3] Kulkarni S. V., Nemade A. C., Sonawwanay P. D., Recent Advances in Manufacturing Processes and Systems, Springer Singapore, 2022.
  • [4] Yin J., Luan S., 2016. Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regenerative biomaterials, 3, 129-135.
  • [5] Kohn J., Welsh W. J., Knight D., 2007. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials, 28, 4171-4177.
  • [6] Youssef A., Hollister S. J., Dalton P. D., 2017. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication, 9, 012002.
  • [7] Ulery B. D., Nair L. S., Laurencin C. T., 2011. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832-864.
  • [8] Abruzzo A., Fiorica C., Palumbo V. D., Altomare R., Damiano G., Gioviale M. C., Tomasello G., Licciardi M., Palumbo F. S., Giammona G., 2014. Using polymeric scaffolds for vascular tissue engineering. International Journal of Polymer Science, 2014.
  • [9] Ravi S., Chaikof E. L., 2010. Biomaterials for vascular tissue engineering. Regenerative Medicine, 5, 107-120.
  • [10] Kurtz S. M., Devine J. N., 2007. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28, 4845-4869.
  • [11] Muratoglu O. K., O’Connor D. O., Bragdon C. R., Delaney J., Jasty M., Harris W. H., Merrill E., Venugopalan P., 2002. Gradient crosslinking of UHMWPE using irradiation in molten state for total joint arthroplasty. Biomaterials, 23, 717-724.
  • [12] Joseph B., James J., Kalarikkal N., Thomas S., 2021. Recycling of medical plastics. Advanced Industrial and Engineering Polymer Research, 4, 199-208.
  • [13] Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D. S., 2011. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011.
  • [14] Puppi D., Chiellini F., Piras A. M., Chiellini E., 2010. Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403-440.
  • [15] Doğan M., 2021. Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84, 2774-2783.
  • [16] Paxton N. C., Allenby M. C., Lewis P. M., Woodruff M. A., 2019. Biomedical applications of polyethylene. European Polymer Journal, 118, 412-428.
  • [17] Bombač D., Brojan M., Fajfar P., Kosel F., Turk R., 2007. Review of materials in medical applications Pregled materialov v medicinskih aplikacijah. RMZ–Materials and Geoenvironment, 54, 471-499.
  • [18] McKeen L. W. in Plastics used in medical devices, Vol., Elsevier, 2014, pp.21-53.
  • [19] Patil N. A., Njuguna J., Kandasubramanian B., 2020. UHMWPE for biomedical applications: Performance and functionalization. European Polymer Journal, 125, 109529.
  • [20] Cobelli N., Scharf B., Crisi G. M., Hardin J., Santambrogio L., 2011. Mediators of the inflammatory response to joint replacement devices. Nature Reviews Rheumatology, 7, 600-608.
  • [21] Govindaraj S., Muthuraman M. S., 2015. Systematic review on sterilization methods of implants and medical devices. Int J ChemTech Res, 8, 897-911.
  • [22] Rutala W., Weber D., 1999. Infection control: the role of disinfection and sterilization. Journal of Hospital Infection, 43, S43-S55.
  • [23] Tipnis N. P., Burgess D. J., 2018. Sterilization of implantable polymer-based medical devices: A review. International Journal of Pharmaceutics, 544, 455-460.
  • [24] Ries M. D., Weaver K., Beals N., 1996. Safety and Efficacy of Ethylene Oxide Sterilized Polyethylene in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 331, 159-163.
  • [25] Mendes G. C. C., Brandão T. R. S., Silva C. L. M., 2007. Ethylene oxide sterilization of medical devices: A review. American Journal of Infection Control, 35, 574-581.
  • [26] Mosley G. A., Gillis J. R., Whitbourne J. E., 2002. Calculating equivalent time for use in determining the lethality of EtO sterilization processes. Medical Device and Diagnostic Industry, 24, 54-63.
  • [27] Heider D., Gomann J., Junghann B., Kaiser U., 2002. Kill kinetics study of Bacillus subtilis spores in ethylene oxide sterilisation processes. Zentr Steril, 10, 158-167.
  • [28] Düzyer S., Hockenberger A., Agah U., Elif E., Kahveci Z. Etilen oksit, otoklav ve ultra viyole sterilizasyonlarının PET elektroçekim liflerin yüzey topografisi üzerine etkisi. Uludağ University Journal of The Faculty of Engineering, 21, 201-218.
  • [29] Farrar D., Gillson R., 2002. Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials, 23, 3905-3912.
  • [30] Saeidlou S., Huneault M. A., Li, H., Park, C. B., 2012. Poly (lactic acid) crystallization. Progress in Polymer Science, 37, 1657-1677.
  • [31] Valente T., Silva D., Gomes P., Fernandes M., Santos J., Sencadas V., 2016. Effect of sterilization methods on electrospun poly (lactic acid)(PLA) fiber alignment for biomedical applications. ACS applied materials & interfaces, 8, 3241-3249.
  • [32] Pietrzak W. S., 2010. Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates. Journal of Craniofacial Surgery, 21, 177-181.
  • [33] Mindivan F., Çolak A., 2021. Tribo‐material based on a UHMWPE/RGOC biocomposite for using in artificial joints. Journal of Applied Polymer Science, 138, 50768.
  • [34] Naresh Kumar N., Yap S. L., Bt Samsudin F. N. D., Khan M. Z., Pattela Srinivasa R. S., 2016. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites. Polymers, 8, 295.
  • [35] Stojilovic N., Dordevic S. V., Stojadinovic S., 2017. Effects of clinical X-ray irradiation on UHMWPE films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 410, 139-143.
  • [36] Wang H., Xu L., Hu J., Wang M., Wu G., 2015. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiation Physics and Chemistry, 115, 88-96.
  • [37] Ibrahim M., He H., 2017. Classification of polyethylene by Raman spectroscopy. Application Note AN52301, Thermo Fisher Scientific.
  • [38] Fischer J., Wallner G. M., Pieber A., 2008. Spectroscopical investigation of ski base materials, 265, 28-36.
  • [39] Sato H., Shimoyama M., Kamiya T., Amari T., Šašic S., Ninomiya T., Siesler H. W., Ozaki Y., 2002. Raman spectra of high‐density, low‐density, and linear low‐density polyethylene pellets and prediction of their physical properties by multivariate data analysis. Journal of Applied Polymer Science, 86, 443-448.
  • [40] Toth S., Füle M., Veres M., Pocsik I., Koos M., Tóth A., Ujvari T., Bertóti I., 2006. Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment. Thin Solid Films, 497, 279-283.
  • [41] Bourell D. L., Watt T. J., Leigh D. K., Fulcher B., 2014. Performance limitations in polymer laser sintering. Physics Procedia, 56, 147-156.
  • [42] Hopkinson N., Majewski C., Zarringhalam H., 2009. Quantifying the degree of particle melt in Selective Laser Sintering®. CIRP annals, 58, 197-200.
  • [43] Khalil Y., Hopkinson N., Kowalski A., Fairclough, J. P. A., 2019. Characterisation of UHMWPE polymer powder for laser sintering. Materials, 12, 3496.
  • [44] Bozkaya O., Arat E., Gök Z. G., Yiğitoğlu M., Vargel İ., 2022. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 166, 111023.
  • [45] Turell M. B., Bellare A., 2004. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene. Biomaterials, 25, 3389-3398.
  • [46] Stephens C. P., Benson R. S., Esther Martinez-Pardo M., Barker E. D., Walker J. B., Stephens T. P., 2005. The effect of dose rate on the crystalline lamellar thickness distribution in gamma-radiation of UHMWPE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236, 540-545.
  • [47] Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U., 2008. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B, 240-251.
  • [48] Souri H., Bhattacharyya D., 2018. Electrical conductivity of the graphene nanoplatelets coated natural and synthetic fibres using electrophoretic deposition technique. International Journal of Smart and Nano Materials, 9, 167-183.
  • [49] Santos C. M. d., Silva B. C. d., Backes E. H., Montagna L. S., Pessan L. A., Passador F. R., 2018. Effect of LLDPE on aging resistance and thermal, mechanical, morphological properties of UHMWPE/LLDPE blends. Materials Research, 21.
  • [50] Rial-Otero R., Galesio M., Capelo J.-L., Simal-Gándara J., 2009. A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chromatographia, 70, 339-348.
  • [51] Wang F. C.-Y., 2004. The microstructure exploration of thermoplastic copolymers by pyrolysis-gas chromatography. Journal of Analytical and Applied Pyrolysis, 71, 83-106.
  • [52] Gimeno P., Auguste M.-L., Handlos V., Nielsen A. M., Schmidt S., Lassu N., Vogel M., Fischer A., Brenier C., Duperray F., 2018. Identification and quantification of ethylene oxide in sterilized medical devices using multiple headspace GC/MS measurement. Journal of Pharmaceutical and Biomedical Analysis, 158, 119-127.
  • [53] Nizamuddin S., Jamal M., Gravina R., Giustozzi F., 2020. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, 121988.
  • [54] Sherazi T. A. in Ultrahigh Molecular Weight Polyethylene, Vol. (Eds.: E. Drioli, L. Giorno), Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp.1-2.
Yıl 2023, , 51 - 60, 31.05.2023
https://doi.org/10.34088/kojose.1179821

Öz

Kaynakça

  • [1] Park G. E., Webster T. J., 2005. A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 1, 18-29.
  • [2] Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L., 2017. Biodegradable materials and metallic implants—a review. Journal of functional biomaterials, 8, 44.
  • [3] Kulkarni S. V., Nemade A. C., Sonawwanay P. D., Recent Advances in Manufacturing Processes and Systems, Springer Singapore, 2022.
  • [4] Yin J., Luan S., 2016. Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regenerative biomaterials, 3, 129-135.
  • [5] Kohn J., Welsh W. J., Knight D., 2007. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials, 28, 4171-4177.
  • [6] Youssef A., Hollister S. J., Dalton P. D., 2017. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication, 9, 012002.
  • [7] Ulery B. D., Nair L. S., Laurencin C. T., 2011. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832-864.
  • [8] Abruzzo A., Fiorica C., Palumbo V. D., Altomare R., Damiano G., Gioviale M. C., Tomasello G., Licciardi M., Palumbo F. S., Giammona G., 2014. Using polymeric scaffolds for vascular tissue engineering. International Journal of Polymer Science, 2014.
  • [9] Ravi S., Chaikof E. L., 2010. Biomaterials for vascular tissue engineering. Regenerative Medicine, 5, 107-120.
  • [10] Kurtz S. M., Devine J. N., 2007. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28, 4845-4869.
  • [11] Muratoglu O. K., O’Connor D. O., Bragdon C. R., Delaney J., Jasty M., Harris W. H., Merrill E., Venugopalan P., 2002. Gradient crosslinking of UHMWPE using irradiation in molten state for total joint arthroplasty. Biomaterials, 23, 717-724.
  • [12] Joseph B., James J., Kalarikkal N., Thomas S., 2021. Recycling of medical plastics. Advanced Industrial and Engineering Polymer Research, 4, 199-208.
  • [13] Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D. S., 2011. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011.
  • [14] Puppi D., Chiellini F., Piras A. M., Chiellini E., 2010. Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403-440.
  • [15] Doğan M., 2021. Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84, 2774-2783.
  • [16] Paxton N. C., Allenby M. C., Lewis P. M., Woodruff M. A., 2019. Biomedical applications of polyethylene. European Polymer Journal, 118, 412-428.
  • [17] Bombač D., Brojan M., Fajfar P., Kosel F., Turk R., 2007. Review of materials in medical applications Pregled materialov v medicinskih aplikacijah. RMZ–Materials and Geoenvironment, 54, 471-499.
  • [18] McKeen L. W. in Plastics used in medical devices, Vol., Elsevier, 2014, pp.21-53.
  • [19] Patil N. A., Njuguna J., Kandasubramanian B., 2020. UHMWPE for biomedical applications: Performance and functionalization. European Polymer Journal, 125, 109529.
  • [20] Cobelli N., Scharf B., Crisi G. M., Hardin J., Santambrogio L., 2011. Mediators of the inflammatory response to joint replacement devices. Nature Reviews Rheumatology, 7, 600-608.
  • [21] Govindaraj S., Muthuraman M. S., 2015. Systematic review on sterilization methods of implants and medical devices. Int J ChemTech Res, 8, 897-911.
  • [22] Rutala W., Weber D., 1999. Infection control: the role of disinfection and sterilization. Journal of Hospital Infection, 43, S43-S55.
  • [23] Tipnis N. P., Burgess D. J., 2018. Sterilization of implantable polymer-based medical devices: A review. International Journal of Pharmaceutics, 544, 455-460.
  • [24] Ries M. D., Weaver K., Beals N., 1996. Safety and Efficacy of Ethylene Oxide Sterilized Polyethylene in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 331, 159-163.
  • [25] Mendes G. C. C., Brandão T. R. S., Silva C. L. M., 2007. Ethylene oxide sterilization of medical devices: A review. American Journal of Infection Control, 35, 574-581.
  • [26] Mosley G. A., Gillis J. R., Whitbourne J. E., 2002. Calculating equivalent time for use in determining the lethality of EtO sterilization processes. Medical Device and Diagnostic Industry, 24, 54-63.
  • [27] Heider D., Gomann J., Junghann B., Kaiser U., 2002. Kill kinetics study of Bacillus subtilis spores in ethylene oxide sterilisation processes. Zentr Steril, 10, 158-167.
  • [28] Düzyer S., Hockenberger A., Agah U., Elif E., Kahveci Z. Etilen oksit, otoklav ve ultra viyole sterilizasyonlarının PET elektroçekim liflerin yüzey topografisi üzerine etkisi. Uludağ University Journal of The Faculty of Engineering, 21, 201-218.
  • [29] Farrar D., Gillson R., 2002. Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials, 23, 3905-3912.
  • [30] Saeidlou S., Huneault M. A., Li, H., Park, C. B., 2012. Poly (lactic acid) crystallization. Progress in Polymer Science, 37, 1657-1677.
  • [31] Valente T., Silva D., Gomes P., Fernandes M., Santos J., Sencadas V., 2016. Effect of sterilization methods on electrospun poly (lactic acid)(PLA) fiber alignment for biomedical applications. ACS applied materials & interfaces, 8, 3241-3249.
  • [32] Pietrzak W. S., 2010. Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates. Journal of Craniofacial Surgery, 21, 177-181.
  • [33] Mindivan F., Çolak A., 2021. Tribo‐material based on a UHMWPE/RGOC biocomposite for using in artificial joints. Journal of Applied Polymer Science, 138, 50768.
  • [34] Naresh Kumar N., Yap S. L., Bt Samsudin F. N. D., Khan M. Z., Pattela Srinivasa R. S., 2016. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites. Polymers, 8, 295.
  • [35] Stojilovic N., Dordevic S. V., Stojadinovic S., 2017. Effects of clinical X-ray irradiation on UHMWPE films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 410, 139-143.
  • [36] Wang H., Xu L., Hu J., Wang M., Wu G., 2015. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiation Physics and Chemistry, 115, 88-96.
  • [37] Ibrahim M., He H., 2017. Classification of polyethylene by Raman spectroscopy. Application Note AN52301, Thermo Fisher Scientific.
  • [38] Fischer J., Wallner G. M., Pieber A., 2008. Spectroscopical investigation of ski base materials, 265, 28-36.
  • [39] Sato H., Shimoyama M., Kamiya T., Amari T., Šašic S., Ninomiya T., Siesler H. W., Ozaki Y., 2002. Raman spectra of high‐density, low‐density, and linear low‐density polyethylene pellets and prediction of their physical properties by multivariate data analysis. Journal of Applied Polymer Science, 86, 443-448.
  • [40] Toth S., Füle M., Veres M., Pocsik I., Koos M., Tóth A., Ujvari T., Bertóti I., 2006. Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment. Thin Solid Films, 497, 279-283.
  • [41] Bourell D. L., Watt T. J., Leigh D. K., Fulcher B., 2014. Performance limitations in polymer laser sintering. Physics Procedia, 56, 147-156.
  • [42] Hopkinson N., Majewski C., Zarringhalam H., 2009. Quantifying the degree of particle melt in Selective Laser Sintering®. CIRP annals, 58, 197-200.
  • [43] Khalil Y., Hopkinson N., Kowalski A., Fairclough, J. P. A., 2019. Characterisation of UHMWPE polymer powder for laser sintering. Materials, 12, 3496.
  • [44] Bozkaya O., Arat E., Gök Z. G., Yiğitoğlu M., Vargel İ., 2022. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 166, 111023.
  • [45] Turell M. B., Bellare A., 2004. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene. Biomaterials, 25, 3389-3398.
  • [46] Stephens C. P., Benson R. S., Esther Martinez-Pardo M., Barker E. D., Walker J. B., Stephens T. P., 2005. The effect of dose rate on the crystalline lamellar thickness distribution in gamma-radiation of UHMWPE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 236, 540-545.
  • [47] Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U., 2008. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B, 240-251.
  • [48] Souri H., Bhattacharyya D., 2018. Electrical conductivity of the graphene nanoplatelets coated natural and synthetic fibres using electrophoretic deposition technique. International Journal of Smart and Nano Materials, 9, 167-183.
  • [49] Santos C. M. d., Silva B. C. d., Backes E. H., Montagna L. S., Pessan L. A., Passador F. R., 2018. Effect of LLDPE on aging resistance and thermal, mechanical, morphological properties of UHMWPE/LLDPE blends. Materials Research, 21.
  • [50] Rial-Otero R., Galesio M., Capelo J.-L., Simal-Gándara J., 2009. A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chromatographia, 70, 339-348.
  • [51] Wang F. C.-Y., 2004. The microstructure exploration of thermoplastic copolymers by pyrolysis-gas chromatography. Journal of Analytical and Applied Pyrolysis, 71, 83-106.
  • [52] Gimeno P., Auguste M.-L., Handlos V., Nielsen A. M., Schmidt S., Lassu N., Vogel M., Fischer A., Brenier C., Duperray F., 2018. Identification and quantification of ethylene oxide in sterilized medical devices using multiple headspace GC/MS measurement. Journal of Pharmaceutical and Biomedical Analysis, 158, 119-127.
  • [53] Nizamuddin S., Jamal M., Gravina R., Giustozzi F., 2020. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, 121988.
  • [54] Sherazi T. A. in Ultrahigh Molecular Weight Polyethylene, Vol. (Eds.: E. Drioli, L. Giorno), Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp.1-2.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Makaleler
Yazarlar

Ogün Bozkaya 0000-0001-8381-8649

Erken Görünüm Tarihi 31 Mayıs 2023
Yayımlanma Tarihi 31 Mayıs 2023
Kabul Tarihi 20 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Bozkaya, O. (2023). Chemical Characterization of Ultra High Molecular Weight Polyethylene Based Tibial Inserts After Ethylene Oxide Sterilization. Kocaeli Journal of Science and Engineering, 6(1), 51-60. https://doi.org/10.34088/kojose.1179821