Araştırma Makalesi
BibTex RIS Kaynak Göster

Spatial Regression Models for Explaining AQI Values in Cities of Turkey

Yıl 2021, , 1 - 15, 31.05.2021
https://doi.org/10.34088/kojose.803949

Öz

The aim of this study is to determine the natural and anthropogenic factors affecting the air quality index (AQI) and to create a model that shows the effects of these factors on AQI values in cities of Turkey. Natural and anthropogenic factors, which are thought to have an effect on AQI, were determined and interpreted with kriging maps. The effects of these factors on AQI were examined by explanatory spatial data analysis (ESDA). Global Moran’s I and local Moran’s I (LISA) indices were examined for the presence of spatial relation. Spatial lag model (SLM) was proposed for parameter estimation instead of ordinary least squares method (OLS) and the average AQI values for 2014 and 2015 were compared. It was also concluded that the average AQI values of 2014 and 2015 were in a strong correlation relationship (Pearson correlation coefficient of 0.914). On the Southern Anatolia, desert dust transport decreases the air quality of the region, however on the Black Sea coast, meteorological factors have a strong effect on air quality. Both SLM and OLS models showed that higher wind speed increases air quality in the cities while increase in GDP increases AQI.

Destekleyen Kurum

Akdeniz Üniversitesi

Proje Numarası

FBA-2018-3410

Teşekkür

This study was supported by Akdeniz University the Scientific Research Projects Coordination Unit with Project No: FBA-2018-3410.

Kaynakça

  • [1] World Health Organization. (2006). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment (No. WHO/SDE/PHE/OEH/06.02). World Health Organization.
  • [2] Avnery S., Mauzerall D., Liu J., Horowitz L., 2011. Global Crop Yield Reductions Due to Surface Ozone Exposure: 1. Year 2000 Crop Production Losses and Economic Damage. Atmospheric Environment, 45(13), pp. 2284‒2296.
  • [3] Nzotungicimpaye C. M., Abiodun B. J., Steyn D. G., 2014. Tropospheric Ozone and its Regional Transport Over Cape Town. Atmospheric Environment, 87, pp. 228‒238.
  • [4] Dimitriou K., Kassomenos P., 2015. Three Year Study of Tropospheric Ozone with Back Trajectories at A Metropolitan and A Medium Scale Urban Area in Greece. Science of the Total Environment, 502, pp. 493‒501.
  • [5] Cape J.N., Fowler D., Davison A., 2003. Ecological Effects of Sulfur Dioxide, Fluorides, and Minor Air Pollutants: Recent Trends and Research Needs. Environment International, 29(2), pp. 201‒211.
  • [6] EPA, 2014. Air Quality Index: A Guide to Air Quality and Your Health. NC, USA.
  • [7] Lee E., Chan C.K., Paatero P., 1999. Application of Positive Matrix Factorization in Source Apportionment of Particulate Pollutants in Hong Kong. Atmospheric Environment, 33(19). pp. 3201‒3212.
  • [8] Querol X., Alastuey A., Rodriguez S., Plana F., Ruiz C.R., Cots N., Massagué G., Puig O., 2001. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmospheric Environment, 35(36), pp. 6407-6419.
  • [9] Mansha M., Ghauri B., Rahman S. Amman A. 2012. Characterization and Source Apportionment of Ambient Air Particulate Matter (PM2.5) in Karachi. Science Of The Total Environment, 425, pp. 176-183.
  • [10] Liu H., Fang C., Zhang X., Wang Z., Bao C., Li F., 2017. The Effect of Natural and Anthropogenic Factors on Haze Pollution in Chinese Cities: A Spatial Econometrics Approach. Journal of Cleaner Prod., 165, pp. 323-333.
  • [11] Xu W., Tian Y., Liu Y., Zhao B., Liu Y., Zhang X. 2019. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. International Journal of Environmental Research and Public Health, 16(16), pp. 2820.
  • [12] Gaga E. O., Döğeroğlu T., Özden Ö., Ari A., Yay O. D., Altuğ H., Van Doorn, W., 2012. Evaluation of Air Quality by Passive and Active Sampling in An Urban City in Turkey: Current Status and Spatial Analysis of Air Pollution Exposure. Environmental Science and Pollution Research, 19(8), pp. 3579-3596.
  • [13] Demir M., Dindaroğlu T., Yılmaz S., 2014. Effects of Forest Areas on air Quality; Aras Basin and its Environment. Journal of Environmental Health Science and Engineering, 12(1), pp. 60.
  • [14] Tecer L. H., Tagil S., 2014. Impact of Urbanization on Local Air Quality: Differences in Urban and Rural Areas of Balikesir, Turkey. CLEAN–Soil, Air, Water, 42(11), pp.1489-1499.
  • [15] Dursun S., Alqaysi N. H. H., 2016. Estimating Air Pollution Quality In Istanbul City Centre By Geographic Information System. International Journal Of Ecosystems And Ecology Science-IjeeS, 6(3), pp. 329-340.
  • [16] Kurnaz K., Cobanoglu G., 2017. Biomonitoring of Air Quality in Istanbul Metropolitan Territory with Epiphytic Lichen Physcia Adscendens (Fr.) Olivier. Fresen. Environ. Bull, 26, pp. 7296.
  • [17] Baykara M., Im U., Unal A., 2019. Evaluation of Impact of Residential Heating on Air Quality of Megacity Istanbul by CMAQ. Science of the Total Environment, 651, pp.1688-1697.
  • [18] Güçlü Y. S., Dabanlı İ., Şişman E., Şen, Z., 2019. Air Quality (AQ) Identification by Innovative Trend Diagram and AQ Index Combinations in Istanbul Megacity. Atmospheric Pollution Research, 10(1), pp. 88-96.
  • [19] Gokce H. B., Arıoğlu E., Copty N. K., Onay T. T., Gun B., 2020. Exterior Air Quality Monitoring for The Eurasia Tunnel in Istanbul, Turkey. Science of The Total Environment, 699, pp. 134312.
  • [20] Dagsuyu C., 2020. Process Capability and Risk Assessment for Air Quality: an Integrated Approach. Human and Ecological Risk Assessment: An International Journal, 26(2), pp. 394-405.
  • [21] Yalcin F., 2016, “Spatial Analysis of The Factors Affecting The Room Price Offered by The Hotels in Antalya City” (in Turkish), Unpublished Doctorate Thesis, Akdeniz University, Graduate School of Social Sciences, Antalya, Turkey.
  • [22] Yalcin F., Mert M., 2018. Determinación de Precios Hedónicos de Habitación de Hotel con Efecto Espacial en Antalya. Economía, Sociedad y territorio, 18(58), pp.697-734.
  • [23] Kowe P., Mutanga O., Odindi J., Dube T., 2019. Exploring the Spatial Patterns of Vegetation Fragmentation Using Local Spatial Autocorrelation Indices. Journal of Applied Remote Sensing, 13(2), pp. 1-14.
  • [24] Lutz S.U., 2019. The European Digital Single Market Strategy: Local Indicators of Spatial Association 2011–2016. Telecommunications Policy, 43(5), pp. 393-410.
  • [25] Yalcin F., Tepe A., Dogan G., Cizmeci N., 2019. Investigation of Air Quality Index by Spatial Data Analysis: a Case Study on Turkey. Proceedings Book of the 2nd Mediterranean, 23.
  • [26] Sensoy S., Demircan M., Ulupinar Y., Balta I., 2008. Climate of Turkey. Turkish State Meteorological Service, 401.
  • [27] Yalcin F., Tepe A. M., Doğan G., Cizmeci N. 2019. Regression Analysis of The Effect of Meteorological Parameters on Air Quality in Three Neighboring Cities Located on The Mediterranean Coast of Turkey. In AIP Conference Proceedings, July, Vol. 2116, No. 1, p. 100015. AIP Publishing LLC.
  • [28] CSB. 2020. SIM Veri Bankasi. (Web page: https://sim.csb.gov.tr) (Date accessed: 01.04.2020).
  • [29] Snow J., 1855. On the Mode of Communication of Cholera (2nd ed.). London: John Churchill.
  • [30] Fang C., Liu H., Li G., Sun D., Miao Z., 2015. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability, 7(11), pp. 15570-15592.
  • [31] Mahara G., Wang C., Yang K., Chen S., Guo J., Gao Q., Guo, X., 2016. The Association Between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models. International Journal of Environmental Research and Public Health, 13(11), pp.1083.
  • [32] Guo Y., Tang Q., Gong D. Y., Zhang Z., 2017. Estimating Ground-Level PM2. 5 Concentrations in Beijing Using a Satellite-Based Geographically and Temporally Weighted Regression Model.Remote Sensing of Environment, 198, pp. 140-149.
  • [33] Li H., You S., Zhang H., Zheng W., Zheng X., Jia J., Zou L., 2017. Modelling of AQI Related to Building Space Heating Energy Demand Based on Big Data Analytics. Applied Energy, 203, pp. 57-71.
  • [34] Tobler W. R., 1970. A Computer Movie Simulating Urban Growth in The Detroit Region. Economic Geography, 46(sup1), pp. 234-240.
  • [35] Anselin L., 1988. Spatial Econometrics: Methods And Models, Kluwer Academic Publishers, Dordrecht.
  • [36] Cliff A. D., Ord J. K., Haggett P., Versey G. R., 1981.Spatial Diffusion: An Historical Geography of Epidemics in an island community (Vol. 14). CUP Archive.
  • [37] Moran P.A.P., 1950a. Notes on Continuous Stochastic Phenomena. Biometrika, 37, pp.17-23.
  • [38] Moran P.A.P., 1950b. A Test for The Serial Independence of Residuals. Biometrika, 37, pp. 178-181.
  • [39] Geary R. C., 1954. The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician, 5(3), pp. 115-146.
  • [40] Getis A., 2008. A History of The Concept of Spatial Autocorrelation: A Geographer's Perspective. Geographical Analysis, 40(3), pp. 297-309.
  • [41] Wheeler D.C., Tiefelsdorf M., 2005. Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression. Journal of Geographical Systems 7, pp. 161–87.
  • [42] Ord J. K., Getis A., 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application.Geographical Analysis, 27(4), pp. 286-306.
  • [43] Anselin L., Bera A. K., Florax R., Yoon M. J., 1996. Simple Diagnostic Tests for Spatial Dependence. Regional Science and Urban Economics, 26(1), pp. 77-104.
  • [44] Getis A., Ord J. K., 1996. Spatial Analysis and Modeling in A GIS Environment. A research Agenda for Geographic Information Science, pp.157-196.
  • [45] Boots B., Tiefelsdorf M., 2000. Global and Local Spatial Autocorrelation in Bounded Regular Tessellations. Journal of Geographical Systems, 2(4), pp. 319-348.
  • [46] Moran P.A.P., 1948. The Interpretation of Statistical Maps. Journal of the Royal Statistical Society B., 10, pp. 243-251
  • [47] Anselin L., 1995. Local Indicators of Spatial Association-LISA, Geographical Analysis, 27, pp. 93-115.
  • [48] Anselin L., Florax, R.J.G.M., Rey, S.J. (ed.). 2004. Advances in Spatial Econometrics, Methodology, Tools and Applications. Springer-Verlag Berlin Heidelberg, Berlin.
  • [49] Anselin L., Hudak S., 1992. Spatial Econometrics in Practice: A Review of Software Options. Regional Science and Urban Economics, 22(3), pp.509-536.
  • [50] Li X. X., Wang L. X., Zhang J., Liu Y. X., Zhang H., Jiang S. W., Zhou X. N., 2014. Exploration of Ecological Factors Related to The Spatial Heterogeneity of Tuberculosis Prevalence in PR China. Global Health Action, 7(1), pp.23620.
  • [51] Jung M. C., Park J., & Kim S., 2019. Spatial Relationships Between Urban Structures and Air Pollution in Korea. Sustainability, 11(2), p. 476.
  • [52] Wang M., Wang H., 2020. Spatial Distribution Patterns and Influencing Factors of PM 2.5 Pollution in the Yangtze River Delta: Empirical Analysis Based on a GWR Model. Asia-Pacific Journal of Atmospheric Sciences, pp.1-13.
  • [53] Anselin L., 2013. Spatial Econometrics: Methods and Models (Vol. 4). Springer Science & Business Media.
  • [54] Elhorst J. P., 2010. Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1), pp. 9-28.
  • [55] Liu, H., Fang, C., Zhang, X., Wang, Z., Bao, C., Li F., 2017. The Effect of Natural and Anthropogenic Factors on Haze Pollution in Chinese Cities: A Spatial Econometrics Approach. Journal of Cleaner Prod., 165, pp. 323-333
  • [56] Ecer A., Sarikaya B., Tepe A. M., Doğan, G., 2017. Mardin Ili Hava Kalitesinin Degerlendirilmesi. Paper Presented at the 7. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Antalya, Turkey.
  • [57] Tepe A. M., Doğan G., 2016. Comparison of Effect of Saharan Dust Transport to Cities Located on Black Sea and Mediterranean Coasts of Turkey. Paper Presented at the 1st International Black Sea Congress on Environmental Sciences, Giresun, Turkey.
  • [58] Tepe A. M., Doğan G., 2019. Türkiye'nin Güney Sahilinde Yer Alan Dört Sehrin Have Kalitelerinin Incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3) , pp. 585-595.
Yıl 2021, , 1 - 15, 31.05.2021
https://doi.org/10.34088/kojose.803949

Öz

Proje Numarası

FBA-2018-3410

Kaynakça

  • [1] World Health Organization. (2006). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment (No. WHO/SDE/PHE/OEH/06.02). World Health Organization.
  • [2] Avnery S., Mauzerall D., Liu J., Horowitz L., 2011. Global Crop Yield Reductions Due to Surface Ozone Exposure: 1. Year 2000 Crop Production Losses and Economic Damage. Atmospheric Environment, 45(13), pp. 2284‒2296.
  • [3] Nzotungicimpaye C. M., Abiodun B. J., Steyn D. G., 2014. Tropospheric Ozone and its Regional Transport Over Cape Town. Atmospheric Environment, 87, pp. 228‒238.
  • [4] Dimitriou K., Kassomenos P., 2015. Three Year Study of Tropospheric Ozone with Back Trajectories at A Metropolitan and A Medium Scale Urban Area in Greece. Science of the Total Environment, 502, pp. 493‒501.
  • [5] Cape J.N., Fowler D., Davison A., 2003. Ecological Effects of Sulfur Dioxide, Fluorides, and Minor Air Pollutants: Recent Trends and Research Needs. Environment International, 29(2), pp. 201‒211.
  • [6] EPA, 2014. Air Quality Index: A Guide to Air Quality and Your Health. NC, USA.
  • [7] Lee E., Chan C.K., Paatero P., 1999. Application of Positive Matrix Factorization in Source Apportionment of Particulate Pollutants in Hong Kong. Atmospheric Environment, 33(19). pp. 3201‒3212.
  • [8] Querol X., Alastuey A., Rodriguez S., Plana F., Ruiz C.R., Cots N., Massagué G., Puig O., 2001. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmospheric Environment, 35(36), pp. 6407-6419.
  • [9] Mansha M., Ghauri B., Rahman S. Amman A. 2012. Characterization and Source Apportionment of Ambient Air Particulate Matter (PM2.5) in Karachi. Science Of The Total Environment, 425, pp. 176-183.
  • [10] Liu H., Fang C., Zhang X., Wang Z., Bao C., Li F., 2017. The Effect of Natural and Anthropogenic Factors on Haze Pollution in Chinese Cities: A Spatial Econometrics Approach. Journal of Cleaner Prod., 165, pp. 323-333.
  • [11] Xu W., Tian Y., Liu Y., Zhao B., Liu Y., Zhang X. 2019. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. International Journal of Environmental Research and Public Health, 16(16), pp. 2820.
  • [12] Gaga E. O., Döğeroğlu T., Özden Ö., Ari A., Yay O. D., Altuğ H., Van Doorn, W., 2012. Evaluation of Air Quality by Passive and Active Sampling in An Urban City in Turkey: Current Status and Spatial Analysis of Air Pollution Exposure. Environmental Science and Pollution Research, 19(8), pp. 3579-3596.
  • [13] Demir M., Dindaroğlu T., Yılmaz S., 2014. Effects of Forest Areas on air Quality; Aras Basin and its Environment. Journal of Environmental Health Science and Engineering, 12(1), pp. 60.
  • [14] Tecer L. H., Tagil S., 2014. Impact of Urbanization on Local Air Quality: Differences in Urban and Rural Areas of Balikesir, Turkey. CLEAN–Soil, Air, Water, 42(11), pp.1489-1499.
  • [15] Dursun S., Alqaysi N. H. H., 2016. Estimating Air Pollution Quality In Istanbul City Centre By Geographic Information System. International Journal Of Ecosystems And Ecology Science-IjeeS, 6(3), pp. 329-340.
  • [16] Kurnaz K., Cobanoglu G., 2017. Biomonitoring of Air Quality in Istanbul Metropolitan Territory with Epiphytic Lichen Physcia Adscendens (Fr.) Olivier. Fresen. Environ. Bull, 26, pp. 7296.
  • [17] Baykara M., Im U., Unal A., 2019. Evaluation of Impact of Residential Heating on Air Quality of Megacity Istanbul by CMAQ. Science of the Total Environment, 651, pp.1688-1697.
  • [18] Güçlü Y. S., Dabanlı İ., Şişman E., Şen, Z., 2019. Air Quality (AQ) Identification by Innovative Trend Diagram and AQ Index Combinations in Istanbul Megacity. Atmospheric Pollution Research, 10(1), pp. 88-96.
  • [19] Gokce H. B., Arıoğlu E., Copty N. K., Onay T. T., Gun B., 2020. Exterior Air Quality Monitoring for The Eurasia Tunnel in Istanbul, Turkey. Science of The Total Environment, 699, pp. 134312.
  • [20] Dagsuyu C., 2020. Process Capability and Risk Assessment for Air Quality: an Integrated Approach. Human and Ecological Risk Assessment: An International Journal, 26(2), pp. 394-405.
  • [21] Yalcin F., 2016, “Spatial Analysis of The Factors Affecting The Room Price Offered by The Hotels in Antalya City” (in Turkish), Unpublished Doctorate Thesis, Akdeniz University, Graduate School of Social Sciences, Antalya, Turkey.
  • [22] Yalcin F., Mert M., 2018. Determinación de Precios Hedónicos de Habitación de Hotel con Efecto Espacial en Antalya. Economía, Sociedad y territorio, 18(58), pp.697-734.
  • [23] Kowe P., Mutanga O., Odindi J., Dube T., 2019. Exploring the Spatial Patterns of Vegetation Fragmentation Using Local Spatial Autocorrelation Indices. Journal of Applied Remote Sensing, 13(2), pp. 1-14.
  • [24] Lutz S.U., 2019. The European Digital Single Market Strategy: Local Indicators of Spatial Association 2011–2016. Telecommunications Policy, 43(5), pp. 393-410.
  • [25] Yalcin F., Tepe A., Dogan G., Cizmeci N., 2019. Investigation of Air Quality Index by Spatial Data Analysis: a Case Study on Turkey. Proceedings Book of the 2nd Mediterranean, 23.
  • [26] Sensoy S., Demircan M., Ulupinar Y., Balta I., 2008. Climate of Turkey. Turkish State Meteorological Service, 401.
  • [27] Yalcin F., Tepe A. M., Doğan G., Cizmeci N. 2019. Regression Analysis of The Effect of Meteorological Parameters on Air Quality in Three Neighboring Cities Located on The Mediterranean Coast of Turkey. In AIP Conference Proceedings, July, Vol. 2116, No. 1, p. 100015. AIP Publishing LLC.
  • [28] CSB. 2020. SIM Veri Bankasi. (Web page: https://sim.csb.gov.tr) (Date accessed: 01.04.2020).
  • [29] Snow J., 1855. On the Mode of Communication of Cholera (2nd ed.). London: John Churchill.
  • [30] Fang C., Liu H., Li G., Sun D., Miao Z., 2015. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability, 7(11), pp. 15570-15592.
  • [31] Mahara G., Wang C., Yang K., Chen S., Guo J., Gao Q., Guo, X., 2016. The Association Between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models. International Journal of Environmental Research and Public Health, 13(11), pp.1083.
  • [32] Guo Y., Tang Q., Gong D. Y., Zhang Z., 2017. Estimating Ground-Level PM2. 5 Concentrations in Beijing Using a Satellite-Based Geographically and Temporally Weighted Regression Model.Remote Sensing of Environment, 198, pp. 140-149.
  • [33] Li H., You S., Zhang H., Zheng W., Zheng X., Jia J., Zou L., 2017. Modelling of AQI Related to Building Space Heating Energy Demand Based on Big Data Analytics. Applied Energy, 203, pp. 57-71.
  • [34] Tobler W. R., 1970. A Computer Movie Simulating Urban Growth in The Detroit Region. Economic Geography, 46(sup1), pp. 234-240.
  • [35] Anselin L., 1988. Spatial Econometrics: Methods And Models, Kluwer Academic Publishers, Dordrecht.
  • [36] Cliff A. D., Ord J. K., Haggett P., Versey G. R., 1981.Spatial Diffusion: An Historical Geography of Epidemics in an island community (Vol. 14). CUP Archive.
  • [37] Moran P.A.P., 1950a. Notes on Continuous Stochastic Phenomena. Biometrika, 37, pp.17-23.
  • [38] Moran P.A.P., 1950b. A Test for The Serial Independence of Residuals. Biometrika, 37, pp. 178-181.
  • [39] Geary R. C., 1954. The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician, 5(3), pp. 115-146.
  • [40] Getis A., 2008. A History of The Concept of Spatial Autocorrelation: A Geographer's Perspective. Geographical Analysis, 40(3), pp. 297-309.
  • [41] Wheeler D.C., Tiefelsdorf M., 2005. Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression. Journal of Geographical Systems 7, pp. 161–87.
  • [42] Ord J. K., Getis A., 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application.Geographical Analysis, 27(4), pp. 286-306.
  • [43] Anselin L., Bera A. K., Florax R., Yoon M. J., 1996. Simple Diagnostic Tests for Spatial Dependence. Regional Science and Urban Economics, 26(1), pp. 77-104.
  • [44] Getis A., Ord J. K., 1996. Spatial Analysis and Modeling in A GIS Environment. A research Agenda for Geographic Information Science, pp.157-196.
  • [45] Boots B., Tiefelsdorf M., 2000. Global and Local Spatial Autocorrelation in Bounded Regular Tessellations. Journal of Geographical Systems, 2(4), pp. 319-348.
  • [46] Moran P.A.P., 1948. The Interpretation of Statistical Maps. Journal of the Royal Statistical Society B., 10, pp. 243-251
  • [47] Anselin L., 1995. Local Indicators of Spatial Association-LISA, Geographical Analysis, 27, pp. 93-115.
  • [48] Anselin L., Florax, R.J.G.M., Rey, S.J. (ed.). 2004. Advances in Spatial Econometrics, Methodology, Tools and Applications. Springer-Verlag Berlin Heidelberg, Berlin.
  • [49] Anselin L., Hudak S., 1992. Spatial Econometrics in Practice: A Review of Software Options. Regional Science and Urban Economics, 22(3), pp.509-536.
  • [50] Li X. X., Wang L. X., Zhang J., Liu Y. X., Zhang H., Jiang S. W., Zhou X. N., 2014. Exploration of Ecological Factors Related to The Spatial Heterogeneity of Tuberculosis Prevalence in PR China. Global Health Action, 7(1), pp.23620.
  • [51] Jung M. C., Park J., & Kim S., 2019. Spatial Relationships Between Urban Structures and Air Pollution in Korea. Sustainability, 11(2), p. 476.
  • [52] Wang M., Wang H., 2020. Spatial Distribution Patterns and Influencing Factors of PM 2.5 Pollution in the Yangtze River Delta: Empirical Analysis Based on a GWR Model. Asia-Pacific Journal of Atmospheric Sciences, pp.1-13.
  • [53] Anselin L., 2013. Spatial Econometrics: Methods and Models (Vol. 4). Springer Science & Business Media.
  • [54] Elhorst J. P., 2010. Applied Spatial Econometrics: Raising the Bar. Spatial Economic Analysis, 5(1), pp. 9-28.
  • [55] Liu, H., Fang, C., Zhang, X., Wang, Z., Bao, C., Li F., 2017. The Effect of Natural and Anthropogenic Factors on Haze Pollution in Chinese Cities: A Spatial Econometrics Approach. Journal of Cleaner Prod., 165, pp. 323-333
  • [56] Ecer A., Sarikaya B., Tepe A. M., Doğan, G., 2017. Mardin Ili Hava Kalitesinin Degerlendirilmesi. Paper Presented at the 7. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Antalya, Turkey.
  • [57] Tepe A. M., Doğan G., 2016. Comparison of Effect of Saharan Dust Transport to Cities Located on Black Sea and Mediterranean Coasts of Turkey. Paper Presented at the 1st International Black Sea Congress on Environmental Sciences, Giresun, Turkey.
  • [58] Tepe A. M., Doğan G., 2019. Türkiye'nin Güney Sahilinde Yer Alan Dört Sehrin Have Kalitelerinin Incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3) , pp. 585-595.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri, Uygulamalı Matematik
Bölüm Makaleler
Yazarlar

Fusun Yalcın 0000-0002-2669-1044

Ahmet Mustafa Tepe 0000-0002-5210-6291

Güray Doğan 0000-0003-0481-8080

Nurfer Çizmeci 0000-0002-5275-6120

Proje Numarası FBA-2018-3410
Yayımlanma Tarihi 31 Mayıs 2021
Kabul Tarihi 1 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yalcın, F., Tepe, A. M., Doğan, G., Çizmeci, N. (2021). Spatial Regression Models for Explaining AQI Values in Cities of Turkey. Kocaeli Journal of Science and Engineering, 4(1), 1-15. https://doi.org/10.34088/kojose.803949