Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 4 Sayı: 2, 160 - 170, 30.11.2021
https://doi.org/10.34088/kojose.952555

Öz

Kaynakça

  • [1] Polat O., Eyidoğan H., Haessler H., Cisternas H., Philip H., 2002. Analysis and interpretation of the aftershock sequence of the August 17, 1999, İzmit (Turkey) earthquake. Journal Seismology, 6(3), pp. 287-306.
  • [2] Bouin M.P., Bouchon M., Karabulut H., Aktar M., 2004. Rupture process of the 1999 November 12 Düzce (Turkey) earthquake deduced from strong motion and Global Positioning System measurements. Geophysical Journal International, 159, pp. 207-211.
  • [3] Taymaz T., 1999. Seismotectonics of the Marmara region: Source characteristics of 1999 Golcuk-Sapanca-Duzce earthquakes. Proceedings of the International Symposium on the Kocaeli Earthquake. Istanbul, Turkey, 2-5 December, pp. 55-78.
  • [4] Pucci S., Martini P.M., Pantosti D., 2008. Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology, 97, pp. 538-554.
  • [5] Pucci S., Martini, P. M., Pantosti, D. 2008. Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology, 97, pp. 538-554.
  • [6] Utkucu M., Nalban S.S., McCloskey J., Steacy S., Alptekin Ö., 2003 Slip distribution and stress changed associated with the 1999 November 12, Düzce (Turkey), Geophysical Journal International, 153(1), pp. 229-241.
  • [7] Rathje E. M., Stewart J. P., Baturay M. B., Bray J. D., Bardet J. P., 2006. Strong ground motions and damage patterns from the 1999 Düzce earthquake in Turkey. Journal Earthquake Engineering, 10(5), pp. 693-724.
  • [8] Özmen B., 2000 12 Kasım 1999 Düzce Depreminin Konut ve İşyeri Hasarları (Rakamsal Verilerle), Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi, Ankara, pp. 155-214.
  • [9] Aki K., 1993. Local site effects on weak and strong ground motion. Tectonophysics, 218, pp. 93-111.
  • [10] Bard P., 1999. Microtremor measurements: A tool for site effect estimation. Proceedings of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama, Japan, 3, pp. 1251-1279.
  • [11] Seo K., 1994. On the applicability of microtremors to engineering purpose, Preliminary report of the Joint ESG Research on Microtremors after the 1993 Kushiro-Oki (Hokkaido, Japan) earthquake. Proceedings of 10th European Conference on Earthquake, 4, pp. 2643-2648.
  • [12] Navarro M., Enomoto T., Sánchez F. J., Matsuda I., Iwatate T., Posadas A., Luzón F., Vidal F., Seo K., 2001. Surface soil effects study using short-period microtremor observations in Almeria City, Southern Spain. Pure Applied Geophysics, 158, pp. 2481-2497.
  • [13] Rosenblueth E., Archiniega A., 1992. Response spectral ratios. Earthquake Engineering Structural Dynamics, 21, pp. 483–492.
  • [14] Ambraseys N. N., Douglas J., Sarma S. K., Smith P. M., 2005. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bulletin Earthquake Engineering, 3, pp. 1-53.
  • [15] Ulutaş E., Özer, M. F., 2010. Empirical attenuation relationship of peak ground acceleration for Eastern Marmara region in Turkey. Arabian Journal Science Engineering, 35, pp, 187-203.
  • [16] Ulutaş E., Coruk, Ö., Karakaş A., 2011. A study of residuals for strong ground motions in Adapazarı basin, NW Turkey, by Ground Motion Prediction Equations (GMPEs). Studia Geophysica Geodaetica, 55, pp, 213-240
  • [17] Douglas J., 2003. Earthquake ground motion estimation using strong motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews, 61, pp, 43-104.
  • [18] Field E. H., Jacob K. H., 1995. A comparison and test of various site-response estimation techniques including three that are not reference-site dependent. Bulletin Seismology Society America, 85: pp. 1127-1143.
  • [19] Gülkan P., Kalkan, E., 2002. Attenuation modeling of recent earthquakes in Turkey. Journal Seismology, 6, pp, 397-409.
  • [20] Ozbey C., Sarı, A., Manuel, L., Erdik, M., Fahjan, Y., 2004. An empirical attenuation relationship for northwestern Turkey ground motion using a random effects approach. Soil Dynamics Earthquake Engineering, 24, pp. 115–125.
  • [21] Ulusay R., Tuncay E., Sonmez H., Gokceoglu C., 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Engineering Geology, 74, pp. 265-291.
  • [22] Gulkan P., Kalkan E., 2005. Discussion of the paper: An empirical attenuation relationship for northwestern Turkey ground motion using a random effects approach. Soil Dynamics Earthquake Engineering, 25, pp. 889-891.
  • [23] Bakır S., Sucuoglu H., Yılmaz T., 2002. An overview of local site effects and the associated building damage in Adapazarı during the 17 August 1999 İzmit Earthquake. Bulletin Seismology Society America, 92, pp. 509-526.
  • [24] Şafak E., Erdik, M., 2000. Recorded main shock and aftershock motions. Earthquake Spectra, 16, pp. 97-112.
  • [25] Özel O., Sasatani T., 2004. A site effect study of the Adapazarı basin, Turkey, from strong-and weak motion data, Journal Seismology, 8, pp. 559-572.
  • [26] Özel N., Sasatani, T., Özel, O., 2004. A study of strong ground motions during the largest aftershock (Mw = 5.8) of the 1999 Kocaeli Turkey Earthquake. Tectonophysics, 391, pp. 347-335.
  • [27] Şimşek O., 1994. Consolidation properties of clays at Düzce Plain and their relationship with geological evolution. Unpublished Ph.D. Thesis, Department of Geology, İstanbul University, 88.
  • [28] Şimşek O., Dalgıç S., 1997. Consolidation properties of clays at Düzce Plain and their relationship with geological evolution. Geological Bulletin of Turkey, 40(2), pp. 29-38.
  • [29] BS 5930., 1999, Code of Practice for Site Investigations: British Standards Institution, London, 207.
  • [30] Özyapıcı Mühendislik Ltd. Şti., 2008. Konaklı Ballıca Köyü Geoteknik Araştırma Raporu, 38 p.
  • [31] Akbulut Mühendislik ve Müşavirlik Ltd. Şti., 2008. Gölyaka-İmamlar Mahallesi Geoteknik Araştırma Raporu, 47p.
  • [32] Özyapıcı Mühendislik Ltd. Şti., 2011. Düzce-Kaynaşlı D100 Otoyolu Geoteknik Araştırma Raporu, 128 p.
  • [33] Özyapıcı Mühendislik Ltd. Şti., 2010. Düzce Uzunmustafa Mahallesi Geoteknik Araştırma Raporu, 47 p.
  • [34] Hanks T.C., Kanamori H., 1979. A moment magnitude scale. Journal Geophysical Research, 84, pp. 2348-2350.
  • [35] Converse A., Brady, A.G., 1992. Basic Strong-Motion Accelerogram Processing Software, Version 1.0: United States Department of the Interior, Geological Survey Open-File Report 92-296A, Washington, D.C.
  • [36] Zare M., Bard, P. Y., 2002. Strong motion dataset of Turkey: Data processing and site classification. Soil Dynamics Earthquake Engineering, 22, pp. 703-718.
  • [37] Joyner W.B. Boore D.M., 1981. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California earthquake. Bulletin Seismology Society America, 71, pp. 2011-2038.
  • [38] Wu Y.M., Shin T.C., Chang C.H., 2001. Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake. Bulletin Seismology Society America, 91, pp. 1218-1228.
  • [39] Nogoshi M., Igarashi, T., 1971. On the amplitude characteristics of microtremor (Part 2). Journal Seismological Society Japan, 24, 26-40 (in Japanese with English abstract).
  • [40] Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report Railway Technical Research Institute, 30(1), pp. 25-30.
  • [41] Bonila L.F., Steidl J.H., Lindley G.T., Tumarkin A. G., Archuleta R.J., 1997. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda and H/V methods, Bulletin Seismology Society America, 87, pp. 710-730.
  • [42] Huang H.C., Teng, T.L., 1999. An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. Pure Applied Geophysics, 156, pp. 631-49.
  • [43] Riepl J., Bard P.Y., Hatzfeld D., Papaioannou C., Nechtschein S., 1998. Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST). Bulletin Seismology Society America, 88, pp. 448-502.
  • [44] Gosar A., 2010. Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Natural Hazards Earth System Science, 10, 761-772.
  • [45] Sokolov VYu., Loh C.H., Jeanc W.Y., 2007. Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan. Soil Dynamics Earthquake Engineering, 27, pp. 314-323.
  • [46] Berilgen M.M., 2007. Evaluation of local site effects on earthquake damages of Fatih Mosque: Engineering Geology, 91, pp. 240-253
  • [47] Fah D., Kind F., Giardini D., 2001. Theoretical investigation of average H/V ratios. Geophysical Journal International, 145, pp. 535-549.
  • [48] Zhao J.X., Zhang J., 2010. Side-effect of using response spectral amplification ratios for soft soil sites-earthquake source-type dependent amplification ratios. Soil Dynamics Earthquake Engineering, 30, pp. 258-269.
  • [49] DBYBHY, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, 2007. Resmi Gazete, Yayın Tarihi: 06.03.2007.
  • [50] Steidl , J. H., Tumarkin, A. G., and Archuleta, R. J., 1996. What is a reference site? Bulletin Seismology Society America, 86, pp. 1733-1748.
  • [51] Safak E., 2001. Local site effects and dynamic soil behavior. Soil Dynamics Earthquake Engineering, 21, pp. 453-458.
  • [52] Yamazaki F., Ansary, M.A., 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization: Earthquake Engineering Structural Dynamics, 26, pp. 671-689.
  • [53] Dönmez C., Pujol, S., 2005. Spatial Distribution of Damage Caused by the 1999 Earthquakes in Turkey. Earthquake Spectra, 21, pp. 53-69

Local Geology Effects on Soil Amplification and Predominant Period in Düzce Basin, NW Turkey

Yıl 2021, Cilt: 4 Sayı: 2, 160 - 170, 30.11.2021
https://doi.org/10.34088/kojose.952555

Öz

Amplification and predominant periods of soils in Düzce Basin were investigated by analysing the data sets of last two major earthquakes and aftershocks of Kocaeli and Düzce earthquakes occurred in 1999 with a magnitude of Mw:7.4 and Mw:7.2, respectively. Two different methods named horizontal/vertical spectral acceleration ratio (HVSAR) and soil-to-rock Response Spectral Acceleration Ratio (RSAR) were used to determine soil amplifications for various periods in Düzce Basin. The data set includes 31 strong gorund motion records from five strong ground motion stations. It was found that the site amplifications at stations are directly related to the local geology underlying the stations. Averaging the residuals between the predicted and observed PGAs resulted in soil amplification from 1.33 to 2.33. The HVSAR method presented soil amplification values between 2.7 and 10 and predominant period values between 0.4 and 0.7 s. Soil amplification values from 1.5 to 14 and predominant periods from 0.5 to 0.8 s were obtained by the RSAR method. High site amplifications and predominant periods mainly depend on the thickness of lithological variances accompanied by low physical and geotechnical properties of alluvial deposits.

Kaynakça

  • [1] Polat O., Eyidoğan H., Haessler H., Cisternas H., Philip H., 2002. Analysis and interpretation of the aftershock sequence of the August 17, 1999, İzmit (Turkey) earthquake. Journal Seismology, 6(3), pp. 287-306.
  • [2] Bouin M.P., Bouchon M., Karabulut H., Aktar M., 2004. Rupture process of the 1999 November 12 Düzce (Turkey) earthquake deduced from strong motion and Global Positioning System measurements. Geophysical Journal International, 159, pp. 207-211.
  • [3] Taymaz T., 1999. Seismotectonics of the Marmara region: Source characteristics of 1999 Golcuk-Sapanca-Duzce earthquakes. Proceedings of the International Symposium on the Kocaeli Earthquake. Istanbul, Turkey, 2-5 December, pp. 55-78.
  • [4] Pucci S., Martini P.M., Pantosti D., 2008. Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology, 97, pp. 538-554.
  • [5] Pucci S., Martini, P. M., Pantosti, D. 2008. Preliminary slip rate estimates for the Düzce segment of the North Anatolian Fault Zone from offset geomorphic markers. Geomorphology, 97, pp. 538-554.
  • [6] Utkucu M., Nalban S.S., McCloskey J., Steacy S., Alptekin Ö., 2003 Slip distribution and stress changed associated with the 1999 November 12, Düzce (Turkey), Geophysical Journal International, 153(1), pp. 229-241.
  • [7] Rathje E. M., Stewart J. P., Baturay M. B., Bray J. D., Bardet J. P., 2006. Strong ground motions and damage patterns from the 1999 Düzce earthquake in Turkey. Journal Earthquake Engineering, 10(5), pp. 693-724.
  • [8] Özmen B., 2000 12 Kasım 1999 Düzce Depreminin Konut ve İşyeri Hasarları (Rakamsal Verilerle), Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi, Ankara, pp. 155-214.
  • [9] Aki K., 1993. Local site effects on weak and strong ground motion. Tectonophysics, 218, pp. 93-111.
  • [10] Bard P., 1999. Microtremor measurements: A tool for site effect estimation. Proceedings of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama, Japan, 3, pp. 1251-1279.
  • [11] Seo K., 1994. On the applicability of microtremors to engineering purpose, Preliminary report of the Joint ESG Research on Microtremors after the 1993 Kushiro-Oki (Hokkaido, Japan) earthquake. Proceedings of 10th European Conference on Earthquake, 4, pp. 2643-2648.
  • [12] Navarro M., Enomoto T., Sánchez F. J., Matsuda I., Iwatate T., Posadas A., Luzón F., Vidal F., Seo K., 2001. Surface soil effects study using short-period microtremor observations in Almeria City, Southern Spain. Pure Applied Geophysics, 158, pp. 2481-2497.
  • [13] Rosenblueth E., Archiniega A., 1992. Response spectral ratios. Earthquake Engineering Structural Dynamics, 21, pp. 483–492.
  • [14] Ambraseys N. N., Douglas J., Sarma S. K., Smith P. M., 2005. Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bulletin Earthquake Engineering, 3, pp. 1-53.
  • [15] Ulutaş E., Özer, M. F., 2010. Empirical attenuation relationship of peak ground acceleration for Eastern Marmara region in Turkey. Arabian Journal Science Engineering, 35, pp, 187-203.
  • [16] Ulutaş E., Coruk, Ö., Karakaş A., 2011. A study of residuals for strong ground motions in Adapazarı basin, NW Turkey, by Ground Motion Prediction Equations (GMPEs). Studia Geophysica Geodaetica, 55, pp, 213-240
  • [17] Douglas J., 2003. Earthquake ground motion estimation using strong motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Science Reviews, 61, pp, 43-104.
  • [18] Field E. H., Jacob K. H., 1995. A comparison and test of various site-response estimation techniques including three that are not reference-site dependent. Bulletin Seismology Society America, 85: pp. 1127-1143.
  • [19] Gülkan P., Kalkan, E., 2002. Attenuation modeling of recent earthquakes in Turkey. Journal Seismology, 6, pp, 397-409.
  • [20] Ozbey C., Sarı, A., Manuel, L., Erdik, M., Fahjan, Y., 2004. An empirical attenuation relationship for northwestern Turkey ground motion using a random effects approach. Soil Dynamics Earthquake Engineering, 24, pp. 115–125.
  • [21] Ulusay R., Tuncay E., Sonmez H., Gokceoglu C., 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Engineering Geology, 74, pp. 265-291.
  • [22] Gulkan P., Kalkan E., 2005. Discussion of the paper: An empirical attenuation relationship for northwestern Turkey ground motion using a random effects approach. Soil Dynamics Earthquake Engineering, 25, pp. 889-891.
  • [23] Bakır S., Sucuoglu H., Yılmaz T., 2002. An overview of local site effects and the associated building damage in Adapazarı during the 17 August 1999 İzmit Earthquake. Bulletin Seismology Society America, 92, pp. 509-526.
  • [24] Şafak E., Erdik, M., 2000. Recorded main shock and aftershock motions. Earthquake Spectra, 16, pp. 97-112.
  • [25] Özel O., Sasatani T., 2004. A site effect study of the Adapazarı basin, Turkey, from strong-and weak motion data, Journal Seismology, 8, pp. 559-572.
  • [26] Özel N., Sasatani, T., Özel, O., 2004. A study of strong ground motions during the largest aftershock (Mw = 5.8) of the 1999 Kocaeli Turkey Earthquake. Tectonophysics, 391, pp. 347-335.
  • [27] Şimşek O., 1994. Consolidation properties of clays at Düzce Plain and their relationship with geological evolution. Unpublished Ph.D. Thesis, Department of Geology, İstanbul University, 88.
  • [28] Şimşek O., Dalgıç S., 1997. Consolidation properties of clays at Düzce Plain and their relationship with geological evolution. Geological Bulletin of Turkey, 40(2), pp. 29-38.
  • [29] BS 5930., 1999, Code of Practice for Site Investigations: British Standards Institution, London, 207.
  • [30] Özyapıcı Mühendislik Ltd. Şti., 2008. Konaklı Ballıca Köyü Geoteknik Araştırma Raporu, 38 p.
  • [31] Akbulut Mühendislik ve Müşavirlik Ltd. Şti., 2008. Gölyaka-İmamlar Mahallesi Geoteknik Araştırma Raporu, 47p.
  • [32] Özyapıcı Mühendislik Ltd. Şti., 2011. Düzce-Kaynaşlı D100 Otoyolu Geoteknik Araştırma Raporu, 128 p.
  • [33] Özyapıcı Mühendislik Ltd. Şti., 2010. Düzce Uzunmustafa Mahallesi Geoteknik Araştırma Raporu, 47 p.
  • [34] Hanks T.C., Kanamori H., 1979. A moment magnitude scale. Journal Geophysical Research, 84, pp. 2348-2350.
  • [35] Converse A., Brady, A.G., 1992. Basic Strong-Motion Accelerogram Processing Software, Version 1.0: United States Department of the Interior, Geological Survey Open-File Report 92-296A, Washington, D.C.
  • [36] Zare M., Bard, P. Y., 2002. Strong motion dataset of Turkey: Data processing and site classification. Soil Dynamics Earthquake Engineering, 22, pp. 703-718.
  • [37] Joyner W.B. Boore D.M., 1981. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California earthquake. Bulletin Seismology Society America, 71, pp. 2011-2038.
  • [38] Wu Y.M., Shin T.C., Chang C.H., 2001. Near real-time mapping of peak ground acceleration and peak ground velocity following a strong earthquake. Bulletin Seismology Society America, 91, pp. 1218-1228.
  • [39] Nogoshi M., Igarashi, T., 1971. On the amplitude characteristics of microtremor (Part 2). Journal Seismological Society Japan, 24, 26-40 (in Japanese with English abstract).
  • [40] Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report Railway Technical Research Institute, 30(1), pp. 25-30.
  • [41] Bonila L.F., Steidl J.H., Lindley G.T., Tumarkin A. G., Archuleta R.J., 1997. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda and H/V methods, Bulletin Seismology Society America, 87, pp. 710-730.
  • [42] Huang H.C., Teng, T.L., 1999. An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. Pure Applied Geophysics, 156, pp. 631-49.
  • [43] Riepl J., Bard P.Y., Hatzfeld D., Papaioannou C., Nechtschein S., 1998. Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST). Bulletin Seismology Society America, 88, pp. 448-502.
  • [44] Gosar A., 2010. Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Natural Hazards Earth System Science, 10, 761-772.
  • [45] Sokolov VYu., Loh C.H., Jeanc W.Y., 2007. Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan. Soil Dynamics Earthquake Engineering, 27, pp. 314-323.
  • [46] Berilgen M.M., 2007. Evaluation of local site effects on earthquake damages of Fatih Mosque: Engineering Geology, 91, pp. 240-253
  • [47] Fah D., Kind F., Giardini D., 2001. Theoretical investigation of average H/V ratios. Geophysical Journal International, 145, pp. 535-549.
  • [48] Zhao J.X., Zhang J., 2010. Side-effect of using response spectral amplification ratios for soft soil sites-earthquake source-type dependent amplification ratios. Soil Dynamics Earthquake Engineering, 30, pp. 258-269.
  • [49] DBYBHY, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, 2007. Resmi Gazete, Yayın Tarihi: 06.03.2007.
  • [50] Steidl , J. H., Tumarkin, A. G., and Archuleta, R. J., 1996. What is a reference site? Bulletin Seismology Society America, 86, pp. 1733-1748.
  • [51] Safak E., 2001. Local site effects and dynamic soil behavior. Soil Dynamics Earthquake Engineering, 21, pp. 453-458.
  • [52] Yamazaki F., Ansary, M.A., 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization: Earthquake Engineering Structural Dynamics, 26, pp. 671-689.
  • [53] Dönmez C., Pujol, S., 2005. Spatial Distribution of Damage Caused by the 1999 Earthquakes in Turkey. Earthquake Spectra, 21, pp. 53-69
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ergin Ulutaş 0000-0002-3553-5051

Özkan Coruk 0000-0001-5072-200X

Ahmet Karakaş 0000-0002-4672-2063

Yayımlanma Tarihi 30 Kasım 2021
Kabul Tarihi 24 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ulutaş, E., Coruk, Ö., & Karakaş, A. (2021). Local Geology Effects on Soil Amplification and Predominant Period in Düzce Basin, NW Turkey. Kocaeli Journal of Science and Engineering, 4(2), 160-170. https://doi.org/10.34088/kojose.952555