Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 5 Sayı: ICOLES2021 Special Issue, 10 - 17, 30.11.2022
https://doi.org/10.34088/kojose.1041310

Öz

Kaynakça

  • [1] Hanack M., Heckmann H., Polley R., 1998. Schaumann E, editor. Houben-Weyl methods of organic chemistry. 4th ed., vol. E 9d. Phthalocyanine and Related Compounds. Stuttgart (Germany): Georg Thieme Verlag. p. 717.
  • [2] Claessens C. G., Hahn U., Torres T., 2008. Phthalocyanines: From Outstanding Electronic Properties to Emerging Application. Chemical Record, 8(2), pp. 75-97.
  • [3] Dumoulin F., Durmuş M., Ahsen V., Nyokong T., 2010. Synthetic Pathways to Water-soluble Phthalocyanines and Close Analogs. Coordination Chemistry Reviews, 254(23–24), pp. 2792-2847.
  • [4] De la Torre G., Vázquez P., Agulló-López, Torres T., 2004. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), pp. 3723–3750.
  • [5] Zorlu Y., Dumoulin F., Bouchu D., Ahsen V., Lafont D., 2010. Monoglycoconjugated Water-Soluble Phthalocyanines. Design and Synthesis of Potential Selectively Targeting PDT Photosensitisers. Tetrahedron Letters, 51(50), pp. 6615-6618.
  • [6] Guillaud G., Simon J., Germain J. P., 1998. Metallophthalocyanines: Gas Sensors, Resistors and Field Effect Transistors. Coordination Chemistry Reviews, 180, pp. 1433–1484.
  • [7] O’Flaherty S. M., Hold S. V., Cook M. J., Torres T., Chen Y., Hanack M., Blau W. J., 2003. Molecular Engineering of Peripherally and Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Advanced Materials, 15(1), pp. 19-32.
  • [8] Ghani F., Kristen J., Riegler H., 2012. Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents. Journal of Chemical and Engineering Data, 57, pp. 439−449.
  • [9] Calvete M. J. F., Dini D., Flom S. R., Hanack M., Pong R. G. S., Shirk J. S., 2005. Synthesis of a Bisphthalocyanine and Its Nonlinear Optical Properties. European Journal of Organic Chemistry, 2005(16), pp. 3499-3509.
  • [10] Durmuş M., Yeşilot S., Ahsen V., 2006. Separation and Mesogenic Properties of Tetraalkoxy-Substituted Phthalocyanine Isomers. New Journal of Chemistry, 30(5), pp. 675–678.
  • [11] Wöhrle D., Suvorova O., Gerdes R., Bartels O., Lapok L., Baziakina N., Makarov S., Slodek A., 2004. Efficient Oxidations and Photooxidations with Molecular Oxygen Using Metal Phthalocyanines as Catalysts and Photocatalysts. Journal of Porphyrins and Phthalocyanines, 8(08), pp. 1020–1041.
  • [12] Kadish K. M., Smith K. M., Guilard R. (Eds.), 2000. The Porphyrin Handbook, Vol. 15–20, Academic Press: San Diego.
  • [13] Kasuga K., Idehara T., Handa M., Isa K., 1992. Preparation of Unsymmetrical Phthalocyanine by Means of a Ring Expansion of Subphthalocyanine. Inorganica Chimica Acta, 196(2), pp 127–128.
  • [14] Gouterman M., 1978. In The Porphyrins, Vol. 3, Dolphin D. (Ed.), Academic Press: New York.
  • [15] Snow A.W., 2003. The Porphyrin Handbook Phthalocyanines: Properties and Materials in Phthalocyanine Aggregation, Vol.17, K.M. Kadish, K.M. Smith, R. Guilard Eds. New York, Academic Press.
  • [16] Rio Y., Rodríguez-Morgade M. S., Torres T., 2008. Modulating the Electronic Properties of Porphyrinoids: A Voyage from The Violet to The Infrared Regions of The Electromagnetic Spectrum. Organic and Biomolecular Chemistry, 6, pp. 1877– 1894.
  • [17] Camp P. J., Jones A. C., Neely R. K., Speirs N. M., 2002. Aggregation of Copper(II) Tetrasulfonated Phthalocyanine in Aqueous Salt Solutions. Journal of Physical Chemistry A, 106, pp. 10725– 10732.
  • [18] Kasha M., Rawls H. R., El-Bayoumi M. S., 1965. The Exciton Model in Molecular Spectroscopy. Pure and Applied Chemistry, 11(3-4), pp. 371–392.
  • [19] Schutte W. J., Sluyters-Rehbach M., Sluyters J. H., 1993. Aggregation of an Octasubstituted Phthalocyanine in Dodecane Solution. Journal of Physical Chemistry, 97, pp. 6069–6073.
  • [20] Dodsworth E. S., Lever A. B. P., Seymour P., Leznoff C. C., 1985. Intramolecular Coupling in Metal-Free Binuclear Phthalocyanines. The Journal of Physical Chemistry, 89, pp. 5698–5705.
  • [21] Zelina J. P., Njue C. K, Rusling J. F., Kamau G. N., Masila M., Kibugu J., 1999. Influence of Surfactant-based Microheterogeneous Fluids on Aggregation of Copper Phthalocyanine Tetrasulfonate. Journal of Porphyrins and Phthalocyanines, 3, pp. 188–195.
  • [22] De Filippis M. P., Dei D., Fantetti L., Roncucci G., 2000. Synthesis of A New Water-Soluble Octa-Cationic Phthalocyanine Derivative for PDT. Tetrahedron Letters, 41, pp. 9143–9147.
  • [23] Çakır D., Çakır V, Bıyıklıoğlu Z., Durmuş M., Kantekin H., 2013. New Water-Soluble Cationic Zinc Phthalocyanines as Potential for Photodynamic Therapy of Cancer. Journal of Organometallic Chemistry, 745, pp. 423–431.
  • [24] Makhseed S., Machacek M., Alfadly W., Tuhl A., Vinodh M., Simunek T., Novakova V, Kubat P., Rudolf E., Zimcik P., 2013. Water-Soluble Non-Aggregating Zinc Phthalocyanine and In Vitro Studies for Photodynamic Therapy. Chemical Communications, 49, 11149–11151.
  • [25] Timoumi A., Wederni M. A., Bouguila N., Jamoussi B., AL Turkestani M. K., Chakroun R., Al-Mur B., 2021. Electrical Impedance Spectroscopy Study of Unsubstituted Palladium (II) Phthalocyanine. Synthetic Metals, 272, pp. 116659.
  • [26] Heremans P., Cheyns D., Rand B. P., 2009. Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture. Accounts of Chemical Research, 42(11), pp. 1740–1747.
  • [27] George R. D., Snow A. W., Shirk J. S., Barger W. R., 1998. The Alpha Substitution Effect on Phthalocyanine Aggregation. Journal of Porphyrins Phthalocyanines, 2, pp. 1–7.
  • [28] Barker C. A., Findlay K. S., Bettington S., Batsanov A. S., Perepichka I. F., Bryce M. R., Beeby A., 2006. Synthesis of New Axially-Disubstituted Silicon-Phthalocyanine Derivatives: Optical and Structural Characterization. Tetrahedron, 62, pp. 9433–9439.
  • [29] Esenpınar A. A., Durmuş M., Bulut M., 2011. Photophysical, Photochemical and BSA Binding/BQ Quenching Properties of Quaternizable Coumarin Containing Water Soluble Zinc Phthalocyanine Complexes. Spectrochimica Acta Part A, 79, pp. 608–617.
  • [30] Jeyachandran Y. L., Mielczarski E., Rai B., Mielczarski J. A., 2009. Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces. Langmuir, 25(19), pp. 11614–11620.
  • [31] Lang K., Mosinger J., Wagnerová D. M., 2004. Photophysical Properties of Porphyrinoid Sensitizers Non-Covalently Bound to Host Molecules; Models for Photodynamic Therapy. Coordination Chemistry Reviews, 248(3-4), pp. 321–350.
  • [32] Garris J. P., Sikes C. S., 1993. Use of Polyamino Acid Analogs of Biomineral Proteins in Dispersion of Inorganic Particulates Important to Water Treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 80(2-3), pp. 103–112.
  • [33] Mallick A., Chattopadhyay N., 2005. Photophysics in Motionally Constrained Bioenvironment: Interaction of Norharmane with Bovine Serum Albumin. Photochemistry and Photobiology, 81(2), pp. 419–424.
  • [34] Curry S., 2003. Plasma Albumin as a Fatty Acid Carrier. Advances in Molecular and Cell Biology, 33, pp. 29–46.
  • [35] Varshney A., Sen P, Ahmad E., Rehan M., Subbarao N., Khan R. H., 2010. Ligand Binding Strategies of Human Serum Albumin: How Can The Cargo Be Utilized? Chirality, 22(1), pp. 77–87.
  • [36] Reetz M. T., Jiao N., 2006. Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions. Angewandte Chemie International Edition, 45, pp. 416–2419.
  • [37] Taquet J. P., Frochot C., Manneville V., Muriel B., 2007. Phthalocyanines Covalently Bound to Biomolecules for a Targeted Photodynamic Therapy. Current Medicinal Chemistry, 14, pp. 1673–1687.
  • [38] Yokoi T., Hattori S., Ishii K., 2019. Encapsulation of Zinc Phthalocyanine into Bovine Serum Albumin Aggregates. Journal of Coordınatıon Chemistry, 72(4), pp. 707–715.
  • [39] Borlan R., Stoia D., Gaina L., Campu A., Marc G., Perde-Schrepler M., Silion M., Maniu D., Focsan M., Astilean S., 2021. Fluorescent Phthalocyanine-Encapsulated Bovine Serum Albumin Nanoparticles: Their Deployment as Therapeutic Agents in the NIR Region. Molecules, 26(15), pp. 4679.
  • [40] Barut B., Demirbaş Ü., Özel A., Kantekin H., 2017. Novel Water Soluble Morpholine Substituted Zn(II) Phthalocyanine: Synthesis, Characterization, DNA/BSA Binding, DNA Photocleavage and Topoisomerase I Inhibition. International Journal of Biological Macromolecules, 105, pp. 499–508.
  • [41] Brasseur N., Langlois R., La Madeleine C., Ouellet R., van Lier J. E., 2008. Receptor-Mediated Targeting of Phthalocyanines to Macrophages Via Covalent Coupling to Native or Maleylated Bovine Serum Albumin. Photochemistry and Photobiology, 69(3), pp. 345–352.
  • [42] Larroquel C., Pelegrin A., van Lier J. E., 1996. Serum Albumin as a Vehicle for Zinc Phthalocyanine: Photodynamic Activities in Solid Tumour Models. British Journal of Cancer, 74, pp. 1886–1890.
  • [43] Yağcı Ç., Duman Y., 2021. Dispersant Effect of Degraded Cellulase and SDS on Copper(II Phthalocyanine Pigment. Biocatalysis and Biotransformation. 39(4), pp. 313–321.
  • [44] Perrin D. D., Armarego W. L. F., 1989. Purification of Laboratory Chemicals. 2nd ed. Oxford (UK): Pergamon Press.
  • [45] Seoudi R., El-Bahy G.S., El Sayed Z.A., 2005. FTIR, TGA and DC Electrical Conductivity Studies of Phthalocyanine and Its Complexes. Journal of Molecular Structure, 753(1–3), pp. 119–126.
  • [46] Sharp J. H., Abkowitz M., 1973. Dimeric Structure of a Copper Phthalocyanine Polymorph. The Journal of Physical Chemistry, 77(4), pp. 477–481.
  • [47] Zhao Y., Wang R., Fang K., Tan Y., Chen S., Guan Y., Hao L., 2019. Investigating the Synergetic Dispersing Effect of Hydrolyzed Biomacromolecule Cellulase and SDS on CuPc Pigment. Colloids Surf B Biointerfaces, 184, 110568.
  • [48] Retnakumari A., Setua S., Menon D., Ravindran P., Muhammed H., Pradeep T., Nair S., Koyakutty M., 2010. Molecular-Receptor-Specific, Non-Toxic, Near-Infrared-Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnology, 21(5), pp.055103.
  • [49] Ghosh D., Mondal S., Ghosh S., Saha A., 2012. Protein Conformation Driven Biomimetic Synthesis of Semiconductor Nanoparticles. Journal of Materials Chemistry, 22(2), pp. 699–706.
  • [50] Della Porta V., Bramanti E., Campanella B., Tine M.R., Duce C., 2016. Conformational Analysis of Bovine Serum Albumin Adsorbed on Halloysite Nanotubes and Kaolinite: A Fourier Transform Infrared Spectroscopy Study. RSC Advances, 6(76), 72386–72398.
  • [51] VanCott T. C., Rose J. L., Misener G. C., Williamson B. E., Schrimpf A. E., Boyle M. E., Schatz P. N., 1989. Magnetic Circular Dichroism and Absorption Spectrum of Zinc Phthalocyanine in an Argon Matrix between 14 700 and 74 000 cm-1. Journal of Physical Chemistry, 93, pp. 2999-3011.
  • [52] Cook M. J., Dunn A. J., Howe S. D., Thomson A. J., Harrison K. J., 1988. Octa-alkoxy Phthalocyanine and Naphthalocyanine derivatives: Dyes with Q-band Absorption in The Far Red or Nearinfrared. Journal of the Chemical Society, 1(8), pp. 2453–2548.
  • [53] Rauf M. A., Hisaindee S., Graham J. P., Nawaz M., 2012. Solvent Effects on The Absorption and Fluorescence Spectra of Cu(II)-Phthalocyanine and DFT Calculations. Journal of Molecular Liquids, 168, pp. 102–109.
  • [54] Edwards L., Gouterman M., 1970. Porphyrins XV. Vapor Absorption Spectra and Stability: Phthalocyanines. Journal of Molecular Spectroscopy, 33, pp. 292–310.
  • [55] Samari F., Hemmateenejad B., Shamsipur M., Rashidi M., Samouei H., 2012. Affinity of Two Novel Five-Coordinated Anticancer Pt(II) Complexes to Human and Bovine Serum Albumins: A Spectroscopic Approach. Inorganic Chemistry, 51(6), 3454–3464.
  • [56] Leckband, D., Israelachvili, J. 2001. Intermolecular Forces in Biology. Quarterly Reviews of Biophysics, 34, pp. 105−267.
  • [57] Sakata S., Inoue Y., Ishihara K,. 2014. Quantitative Evaluation of Interaction Force between Functional Groups in Protein and Polymer Brush Surfaces. Langmuir, 30, pp. 2745–2751.
  • [58] Kejík, Z., Kaplánek, R., B íza, T., et al., 2012. Supramolecular Approach for Target Transport of Photodynamic Anticancer Agents. Supramolecular Chemistry., 24, pp. 106–116.
  • [59] Gol’dshleger N.V., Baulin V.E., Tsivadze, A.Y., 2014. Phthalocyanines in Organized Microheterogeneous Systems. Review. Protection of Metals and Physical Chemistry of Surfaces, 50, pp. 135–172.
  • [60] Ali H., Langlois R., Wagner Jr., Brasseur N., Paquette B., Van Lier J., 1988. Biological Activities of Phthalocyanines-X. Syntheses and Analyses of Sulfonated Phthalocyanines. Photochemistry and Photobiology, 47, pp. 713–719.
  • [61] Lo P.C., Rodriguez-Morgade M.S., Pandey R.K., Ng D.K.P., Torres T., Dumoulin F., 2020. The Unique Features and Promises of Phthalocyanines as Advanced Photosensitisers for Photodynamic Therapy of Cancer. Chemical Society, Reviews, 9, pp. 1041–1056.
  • [62] Reetz M.T., Jiao N. 2006. Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions. Angewandte Chemie International Edition, 45, pp. 2416–2419.
  • [63] Subhedar P.B., Gogate P.B., 2014. Enhancing The Activity of Cellulase Enzyme Using Ultrasonic Irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, pp. 108–114.
  • [64] Xue F., Xie C., Zhang Y., Qiao Z., Qiao X., Xu J., Yan S., 2012, Two New Dicopper(II) Complexes with Oxamido-bridged Ligand: Synthesis, Crystal Structures, DNA Binding/Cleavage and BSA Binding Activity. Journal of Inorganic Biochemistry, 115, pp. 78–86.
  • [65] Jayabharathi J., Thanikachalam V., Perumal M.V., 2012. A Study on The Binding Interaction Between The Imidazole Derivative and Bovine Serum Albumin by Fluorescence Spectroscopy. Journal of Luminescence, 132(3), pp. 707–712.
  • [66] Santos S.F., Zanette D., Fischer H., Itri R., 2003. A Systematic Study of Bovine Serum Albumin (BSA) and Sodium Dodecyl Sulfate (SDS) Interactions by Surface Tension and Small Angle X-Ray Scattering. Journal of Colloid and Interface Science, 262, pp. 400–408.
  • [67] Shweitzer B., Zanette D., Itri R., 2004, Bovine Serum Albumin (BSA) Plays a Role in The Size of SDS Micelle-like Aggregates at The Saturation Binding: The Ionic Strength Effect. Journal of Colloid and Interface Science, 277, pp. 285–291.
  • [68] Mondal S., Raposo M.L., Prieto G., Ghosh S., 2016. Interaction of Myoglobin with Cationic and Nonionic Surfactant in Phosphate Buffer Media. Journal of Chemical & Engineering Data, 61(3), pp. 1221–1228.
  • [69] Diaz X., Abuin E.L.E., 2003. Quenching of BSA Intrinsic Fluorescence by Alkyl Pyridinium Cations: Its relationship to Surfactant-Protein Association. Journal of Photochemistry and Photobiology A: Chemistry, 155, pp. 157–162.

A Study on Unsubstituted Cu(II) Phthalocyanine and Bovine Serum Albumin Bioconjugation

Yıl 2022, Cilt: 5 Sayı: ICOLES2021 Special Issue, 10 - 17, 30.11.2022
https://doi.org/10.34088/kojose.1041310

Öz

The ground state electronic and fluorescence spectra of unsubstituted copper (II) phthalocyanine (CuPc) have been studied in the presence of bovine serum albumin (BSA) in water as a solvent. The effect of sodium dodecyl sulfate (SDS) on the solution properties of CuPc: BSA bioconjugate has also been investigated. FT-IR, UV-Vis, and fluorescence analysis have been carried to evaluate the BSA: CuPc bioconjugation. The optimum bioconjugate ratio of BSA: CuPc has been studied via UV-Vis and fluorescence spectral techniques. The collaborative effect of SDS with BSA on the aggregation of CuPc suspension has also been studied in terms of UV-Vis, fluorescence, and FT–IR analysis.

Kaynakça

  • [1] Hanack M., Heckmann H., Polley R., 1998. Schaumann E, editor. Houben-Weyl methods of organic chemistry. 4th ed., vol. E 9d. Phthalocyanine and Related Compounds. Stuttgart (Germany): Georg Thieme Verlag. p. 717.
  • [2] Claessens C. G., Hahn U., Torres T., 2008. Phthalocyanines: From Outstanding Electronic Properties to Emerging Application. Chemical Record, 8(2), pp. 75-97.
  • [3] Dumoulin F., Durmuş M., Ahsen V., Nyokong T., 2010. Synthetic Pathways to Water-soluble Phthalocyanines and Close Analogs. Coordination Chemistry Reviews, 254(23–24), pp. 2792-2847.
  • [4] De la Torre G., Vázquez P., Agulló-López, Torres T., 2004. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chemical Reviews, 104(9), pp. 3723–3750.
  • [5] Zorlu Y., Dumoulin F., Bouchu D., Ahsen V., Lafont D., 2010. Monoglycoconjugated Water-Soluble Phthalocyanines. Design and Synthesis of Potential Selectively Targeting PDT Photosensitisers. Tetrahedron Letters, 51(50), pp. 6615-6618.
  • [6] Guillaud G., Simon J., Germain J. P., 1998. Metallophthalocyanines: Gas Sensors, Resistors and Field Effect Transistors. Coordination Chemistry Reviews, 180, pp. 1433–1484.
  • [7] O’Flaherty S. M., Hold S. V., Cook M. J., Torres T., Chen Y., Hanack M., Blau W. J., 2003. Molecular Engineering of Peripherally and Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Advanced Materials, 15(1), pp. 19-32.
  • [8] Ghani F., Kristen J., Riegler H., 2012. Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents. Journal of Chemical and Engineering Data, 57, pp. 439−449.
  • [9] Calvete M. J. F., Dini D., Flom S. R., Hanack M., Pong R. G. S., Shirk J. S., 2005. Synthesis of a Bisphthalocyanine and Its Nonlinear Optical Properties. European Journal of Organic Chemistry, 2005(16), pp. 3499-3509.
  • [10] Durmuş M., Yeşilot S., Ahsen V., 2006. Separation and Mesogenic Properties of Tetraalkoxy-Substituted Phthalocyanine Isomers. New Journal of Chemistry, 30(5), pp. 675–678.
  • [11] Wöhrle D., Suvorova O., Gerdes R., Bartels O., Lapok L., Baziakina N., Makarov S., Slodek A., 2004. Efficient Oxidations and Photooxidations with Molecular Oxygen Using Metal Phthalocyanines as Catalysts and Photocatalysts. Journal of Porphyrins and Phthalocyanines, 8(08), pp. 1020–1041.
  • [12] Kadish K. M., Smith K. M., Guilard R. (Eds.), 2000. The Porphyrin Handbook, Vol. 15–20, Academic Press: San Diego.
  • [13] Kasuga K., Idehara T., Handa M., Isa K., 1992. Preparation of Unsymmetrical Phthalocyanine by Means of a Ring Expansion of Subphthalocyanine. Inorganica Chimica Acta, 196(2), pp 127–128.
  • [14] Gouterman M., 1978. In The Porphyrins, Vol. 3, Dolphin D. (Ed.), Academic Press: New York.
  • [15] Snow A.W., 2003. The Porphyrin Handbook Phthalocyanines: Properties and Materials in Phthalocyanine Aggregation, Vol.17, K.M. Kadish, K.M. Smith, R. Guilard Eds. New York, Academic Press.
  • [16] Rio Y., Rodríguez-Morgade M. S., Torres T., 2008. Modulating the Electronic Properties of Porphyrinoids: A Voyage from The Violet to The Infrared Regions of The Electromagnetic Spectrum. Organic and Biomolecular Chemistry, 6, pp. 1877– 1894.
  • [17] Camp P. J., Jones A. C., Neely R. K., Speirs N. M., 2002. Aggregation of Copper(II) Tetrasulfonated Phthalocyanine in Aqueous Salt Solutions. Journal of Physical Chemistry A, 106, pp. 10725– 10732.
  • [18] Kasha M., Rawls H. R., El-Bayoumi M. S., 1965. The Exciton Model in Molecular Spectroscopy. Pure and Applied Chemistry, 11(3-4), pp. 371–392.
  • [19] Schutte W. J., Sluyters-Rehbach M., Sluyters J. H., 1993. Aggregation of an Octasubstituted Phthalocyanine in Dodecane Solution. Journal of Physical Chemistry, 97, pp. 6069–6073.
  • [20] Dodsworth E. S., Lever A. B. P., Seymour P., Leznoff C. C., 1985. Intramolecular Coupling in Metal-Free Binuclear Phthalocyanines. The Journal of Physical Chemistry, 89, pp. 5698–5705.
  • [21] Zelina J. P., Njue C. K, Rusling J. F., Kamau G. N., Masila M., Kibugu J., 1999. Influence of Surfactant-based Microheterogeneous Fluids on Aggregation of Copper Phthalocyanine Tetrasulfonate. Journal of Porphyrins and Phthalocyanines, 3, pp. 188–195.
  • [22] De Filippis M. P., Dei D., Fantetti L., Roncucci G., 2000. Synthesis of A New Water-Soluble Octa-Cationic Phthalocyanine Derivative for PDT. Tetrahedron Letters, 41, pp. 9143–9147.
  • [23] Çakır D., Çakır V, Bıyıklıoğlu Z., Durmuş M., Kantekin H., 2013. New Water-Soluble Cationic Zinc Phthalocyanines as Potential for Photodynamic Therapy of Cancer. Journal of Organometallic Chemistry, 745, pp. 423–431.
  • [24] Makhseed S., Machacek M., Alfadly W., Tuhl A., Vinodh M., Simunek T., Novakova V, Kubat P., Rudolf E., Zimcik P., 2013. Water-Soluble Non-Aggregating Zinc Phthalocyanine and In Vitro Studies for Photodynamic Therapy. Chemical Communications, 49, 11149–11151.
  • [25] Timoumi A., Wederni M. A., Bouguila N., Jamoussi B., AL Turkestani M. K., Chakroun R., Al-Mur B., 2021. Electrical Impedance Spectroscopy Study of Unsubstituted Palladium (II) Phthalocyanine. Synthetic Metals, 272, pp. 116659.
  • [26] Heremans P., Cheyns D., Rand B. P., 2009. Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture. Accounts of Chemical Research, 42(11), pp. 1740–1747.
  • [27] George R. D., Snow A. W., Shirk J. S., Barger W. R., 1998. The Alpha Substitution Effect on Phthalocyanine Aggregation. Journal of Porphyrins Phthalocyanines, 2, pp. 1–7.
  • [28] Barker C. A., Findlay K. S., Bettington S., Batsanov A. S., Perepichka I. F., Bryce M. R., Beeby A., 2006. Synthesis of New Axially-Disubstituted Silicon-Phthalocyanine Derivatives: Optical and Structural Characterization. Tetrahedron, 62, pp. 9433–9439.
  • [29] Esenpınar A. A., Durmuş M., Bulut M., 2011. Photophysical, Photochemical and BSA Binding/BQ Quenching Properties of Quaternizable Coumarin Containing Water Soluble Zinc Phthalocyanine Complexes. Spectrochimica Acta Part A, 79, pp. 608–617.
  • [30] Jeyachandran Y. L., Mielczarski E., Rai B., Mielczarski J. A., 2009. Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces. Langmuir, 25(19), pp. 11614–11620.
  • [31] Lang K., Mosinger J., Wagnerová D. M., 2004. Photophysical Properties of Porphyrinoid Sensitizers Non-Covalently Bound to Host Molecules; Models for Photodynamic Therapy. Coordination Chemistry Reviews, 248(3-4), pp. 321–350.
  • [32] Garris J. P., Sikes C. S., 1993. Use of Polyamino Acid Analogs of Biomineral Proteins in Dispersion of Inorganic Particulates Important to Water Treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 80(2-3), pp. 103–112.
  • [33] Mallick A., Chattopadhyay N., 2005. Photophysics in Motionally Constrained Bioenvironment: Interaction of Norharmane with Bovine Serum Albumin. Photochemistry and Photobiology, 81(2), pp. 419–424.
  • [34] Curry S., 2003. Plasma Albumin as a Fatty Acid Carrier. Advances in Molecular and Cell Biology, 33, pp. 29–46.
  • [35] Varshney A., Sen P, Ahmad E., Rehan M., Subbarao N., Khan R. H., 2010. Ligand Binding Strategies of Human Serum Albumin: How Can The Cargo Be Utilized? Chirality, 22(1), pp. 77–87.
  • [36] Reetz M. T., Jiao N., 2006. Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions. Angewandte Chemie International Edition, 45, pp. 416–2419.
  • [37] Taquet J. P., Frochot C., Manneville V., Muriel B., 2007. Phthalocyanines Covalently Bound to Biomolecules for a Targeted Photodynamic Therapy. Current Medicinal Chemistry, 14, pp. 1673–1687.
  • [38] Yokoi T., Hattori S., Ishii K., 2019. Encapsulation of Zinc Phthalocyanine into Bovine Serum Albumin Aggregates. Journal of Coordınatıon Chemistry, 72(4), pp. 707–715.
  • [39] Borlan R., Stoia D., Gaina L., Campu A., Marc G., Perde-Schrepler M., Silion M., Maniu D., Focsan M., Astilean S., 2021. Fluorescent Phthalocyanine-Encapsulated Bovine Serum Albumin Nanoparticles: Their Deployment as Therapeutic Agents in the NIR Region. Molecules, 26(15), pp. 4679.
  • [40] Barut B., Demirbaş Ü., Özel A., Kantekin H., 2017. Novel Water Soluble Morpholine Substituted Zn(II) Phthalocyanine: Synthesis, Characterization, DNA/BSA Binding, DNA Photocleavage and Topoisomerase I Inhibition. International Journal of Biological Macromolecules, 105, pp. 499–508.
  • [41] Brasseur N., Langlois R., La Madeleine C., Ouellet R., van Lier J. E., 2008. Receptor-Mediated Targeting of Phthalocyanines to Macrophages Via Covalent Coupling to Native or Maleylated Bovine Serum Albumin. Photochemistry and Photobiology, 69(3), pp. 345–352.
  • [42] Larroquel C., Pelegrin A., van Lier J. E., 1996. Serum Albumin as a Vehicle for Zinc Phthalocyanine: Photodynamic Activities in Solid Tumour Models. British Journal of Cancer, 74, pp. 1886–1890.
  • [43] Yağcı Ç., Duman Y., 2021. Dispersant Effect of Degraded Cellulase and SDS on Copper(II Phthalocyanine Pigment. Biocatalysis and Biotransformation. 39(4), pp. 313–321.
  • [44] Perrin D. D., Armarego W. L. F., 1989. Purification of Laboratory Chemicals. 2nd ed. Oxford (UK): Pergamon Press.
  • [45] Seoudi R., El-Bahy G.S., El Sayed Z.A., 2005. FTIR, TGA and DC Electrical Conductivity Studies of Phthalocyanine and Its Complexes. Journal of Molecular Structure, 753(1–3), pp. 119–126.
  • [46] Sharp J. H., Abkowitz M., 1973. Dimeric Structure of a Copper Phthalocyanine Polymorph. The Journal of Physical Chemistry, 77(4), pp. 477–481.
  • [47] Zhao Y., Wang R., Fang K., Tan Y., Chen S., Guan Y., Hao L., 2019. Investigating the Synergetic Dispersing Effect of Hydrolyzed Biomacromolecule Cellulase and SDS on CuPc Pigment. Colloids Surf B Biointerfaces, 184, 110568.
  • [48] Retnakumari A., Setua S., Menon D., Ravindran P., Muhammed H., Pradeep T., Nair S., Koyakutty M., 2010. Molecular-Receptor-Specific, Non-Toxic, Near-Infrared-Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnology, 21(5), pp.055103.
  • [49] Ghosh D., Mondal S., Ghosh S., Saha A., 2012. Protein Conformation Driven Biomimetic Synthesis of Semiconductor Nanoparticles. Journal of Materials Chemistry, 22(2), pp. 699–706.
  • [50] Della Porta V., Bramanti E., Campanella B., Tine M.R., Duce C., 2016. Conformational Analysis of Bovine Serum Albumin Adsorbed on Halloysite Nanotubes and Kaolinite: A Fourier Transform Infrared Spectroscopy Study. RSC Advances, 6(76), 72386–72398.
  • [51] VanCott T. C., Rose J. L., Misener G. C., Williamson B. E., Schrimpf A. E., Boyle M. E., Schatz P. N., 1989. Magnetic Circular Dichroism and Absorption Spectrum of Zinc Phthalocyanine in an Argon Matrix between 14 700 and 74 000 cm-1. Journal of Physical Chemistry, 93, pp. 2999-3011.
  • [52] Cook M. J., Dunn A. J., Howe S. D., Thomson A. J., Harrison K. J., 1988. Octa-alkoxy Phthalocyanine and Naphthalocyanine derivatives: Dyes with Q-band Absorption in The Far Red or Nearinfrared. Journal of the Chemical Society, 1(8), pp. 2453–2548.
  • [53] Rauf M. A., Hisaindee S., Graham J. P., Nawaz M., 2012. Solvent Effects on The Absorption and Fluorescence Spectra of Cu(II)-Phthalocyanine and DFT Calculations. Journal of Molecular Liquids, 168, pp. 102–109.
  • [54] Edwards L., Gouterman M., 1970. Porphyrins XV. Vapor Absorption Spectra and Stability: Phthalocyanines. Journal of Molecular Spectroscopy, 33, pp. 292–310.
  • [55] Samari F., Hemmateenejad B., Shamsipur M., Rashidi M., Samouei H., 2012. Affinity of Two Novel Five-Coordinated Anticancer Pt(II) Complexes to Human and Bovine Serum Albumins: A Spectroscopic Approach. Inorganic Chemistry, 51(6), 3454–3464.
  • [56] Leckband, D., Israelachvili, J. 2001. Intermolecular Forces in Biology. Quarterly Reviews of Biophysics, 34, pp. 105−267.
  • [57] Sakata S., Inoue Y., Ishihara K,. 2014. Quantitative Evaluation of Interaction Force between Functional Groups in Protein and Polymer Brush Surfaces. Langmuir, 30, pp. 2745–2751.
  • [58] Kejík, Z., Kaplánek, R., B íza, T., et al., 2012. Supramolecular Approach for Target Transport of Photodynamic Anticancer Agents. Supramolecular Chemistry., 24, pp. 106–116.
  • [59] Gol’dshleger N.V., Baulin V.E., Tsivadze, A.Y., 2014. Phthalocyanines in Organized Microheterogeneous Systems. Review. Protection of Metals and Physical Chemistry of Surfaces, 50, pp. 135–172.
  • [60] Ali H., Langlois R., Wagner Jr., Brasseur N., Paquette B., Van Lier J., 1988. Biological Activities of Phthalocyanines-X. Syntheses and Analyses of Sulfonated Phthalocyanines. Photochemistry and Photobiology, 47, pp. 713–719.
  • [61] Lo P.C., Rodriguez-Morgade M.S., Pandey R.K., Ng D.K.P., Torres T., Dumoulin F., 2020. The Unique Features and Promises of Phthalocyanines as Advanced Photosensitisers for Photodynamic Therapy of Cancer. Chemical Society, Reviews, 9, pp. 1041–1056.
  • [62] Reetz M.T., Jiao N. 2006. Copper–Phthalocyanine Conjugates of Serum Albumins as Enantioselective Catalysts in Diels–Alder Reactions. Angewandte Chemie International Edition, 45, pp. 2416–2419.
  • [63] Subhedar P.B., Gogate P.B., 2014. Enhancing The Activity of Cellulase Enzyme Using Ultrasonic Irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, pp. 108–114.
  • [64] Xue F., Xie C., Zhang Y., Qiao Z., Qiao X., Xu J., Yan S., 2012, Two New Dicopper(II) Complexes with Oxamido-bridged Ligand: Synthesis, Crystal Structures, DNA Binding/Cleavage and BSA Binding Activity. Journal of Inorganic Biochemistry, 115, pp. 78–86.
  • [65] Jayabharathi J., Thanikachalam V., Perumal M.V., 2012. A Study on The Binding Interaction Between The Imidazole Derivative and Bovine Serum Albumin by Fluorescence Spectroscopy. Journal of Luminescence, 132(3), pp. 707–712.
  • [66] Santos S.F., Zanette D., Fischer H., Itri R., 2003. A Systematic Study of Bovine Serum Albumin (BSA) and Sodium Dodecyl Sulfate (SDS) Interactions by Surface Tension and Small Angle X-Ray Scattering. Journal of Colloid and Interface Science, 262, pp. 400–408.
  • [67] Shweitzer B., Zanette D., Itri R., 2004, Bovine Serum Albumin (BSA) Plays a Role in The Size of SDS Micelle-like Aggregates at The Saturation Binding: The Ionic Strength Effect. Journal of Colloid and Interface Science, 277, pp. 285–291.
  • [68] Mondal S., Raposo M.L., Prieto G., Ghosh S., 2016. Interaction of Myoglobin with Cationic and Nonionic Surfactant in Phosphate Buffer Media. Journal of Chemical & Engineering Data, 61(3), pp. 1221–1228.
  • [69] Diaz X., Abuin E.L.E., 2003. Quenching of BSA Intrinsic Fluorescence by Alkyl Pyridinium Cations: Its relationship to Surfactant-Protein Association. Journal of Photochemistry and Photobiology A: Chemistry, 155, pp. 157–162.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Çiğdem Yağcı 0000-0002-7325-4197

Erken Görünüm Tarihi 30 Haziran 2022
Yayımlanma Tarihi 30 Kasım 2022
Kabul Tarihi 22 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: ICOLES2021 Special Issue

Kaynak Göster

APA Yağcı, Ç. (2022). A Study on Unsubstituted Cu(II) Phthalocyanine and Bovine Serum Albumin Bioconjugation. Kocaeli Journal of Science and Engineering, 5(ICOLES2021 Special Issue), 10-17. https://doi.org/10.34088/kojose.1041310