Araştırma Makalesi
BibTex RIS Kaynak Göster

Nokta emici dalga enerjisi dönüştürücü şamandıralarının Ansys AQWA kullanılarak geometri analizi ve optimizasyonu

Yıl 2025, Cilt: 8 Sayı: 2, 147 - 153, 30.11.2025
https://doi.org/10.34088/kojose.1695330

Öz

Bu çalışmada, dalgaların dikey hareketinden enerji üreten dört farklı nokta emici şamandıra geometrisinin hidrodinamik performansı Ansys AQWA yazılımı kullanılarak analiz edilmiştir. Analizler Karadeniz’in ortalama dalga verileri doğrultusunda gerçekleştirilmiş, şamandıraların tepki genliği operatörü (RAO), ek kütle, radyasyon sönümlemesi ve uyarıcı kuvvet parametreleri değerlendirilmiştir. Elde edilen sonuçlara göre, P4 kodlu şamandıranın RAO eğrisi, Karadeniz’in baskın dalga frekans aralığı olan 0,5–0,7 rad/s’de maksimum değerlere ulaşmış ve enerji emiliminde yüksek performans sergilemiştir. Aynı frekans aralığında P4 tasarımının ek kütle değeri 40–45 kg aralığında sabitlenmiş, bu da enerji emilimini artıran bir etken olarak değerlendirilmiştir. Radyasyon sönümleme değerleri ise P4 için 20–25 N·s/m aralığında gerçekleşmiş; salmalı yapısı ve ağırlık merkezinin salmaya yakınlığı nedeniyle diğer tasarımlara göre daha stabil ve dirençli bir yapı sergilemiştir. Uyarıcı kuvvet analizlerinde ise yine aynı frekans aralığında P4 tasarımı 1900 N/m ile en yüksek değere ulaşmıştır. Bu sonuçlar, P4 şamandırasının Karadeniz koşullarında optimum enerji verimi sunan en uygun geometri olduğunu ortaya koymuştur.

Etik Beyan

Bu çalışmada kullanılan tüm veriler ve yöntemler, ilgili ulusal ve uluslararası etik kurallara uygun şekilde gerçekleştirilmiştir. Araştırma sürecinde herhangi bir etik kurul onayı gerektiren insan ya da hayvan denek kullanılmamıştır. Özel izin gerektiren herhangi bir materyal, veri ya da yöntem de söz konusu değildir.

Destekleyen Kurum

Bu çalışma herhangi bir kurum veya kuruluş tarafından maddi olarak desteklenmemiştir.

Kaynakça

  • [1] International Energy Agency, 2025. Global Energy Review 2025. International Energy Agency, Paris, France.
  • [2] Oxford Institute for Energy Studies, 2025. Global Electricity Demand and the Net-Zero Pathway. Oxford Institute for Energy Studies, Oxford, UK.
  • [3] Liu H., Han P., 2024. Renewable energy development and carbon emissions: The role of electricity exchange. Journal of Cleaner Production, 439, pp. 140807.
  • [4] Wang D., Grimmelt M., 2023. Climate influence on the optimal stand-alone microgrid system with hybrid storage – a comparative study. Renewable Energy, 208, pp. 657–664.
  • [5] Bouhrim H., El Marjani A., Nechad R., Hajjout I., 2024. Ocean wave energy conversion: A review. Journal of Marine Science and Engineering, 12(11), pp. 1922.
  • [6] Vervaet T., Stratigaki V., De Backer B., Stockman K., Vantorre M., Troch P., 2022. Experimental modelling of point-absorber wave energy converter arrays: A comprehensive review, identification of research gaps and design of the WEC farm setup. Journal of Marine Science and Engineering, 10(8), pp. 1062.
  • [7] Wang H., Sun J., Xi Z., Dai S., Xing F., Xu M., 2024. Recent progress on built-in wave energy converters: A review. Journal of Marine Science and Engineering, 12(7), pp. 1176.
  • [8] Guo B., Wang T., Jin S., Duan S., Yang K., Zhao Y., 2022. A review of point absorber wave energy converters. Journal of Marine Science and Engineering, 10(10), pp. 1534.
  • [9] Abaei M.M., Arzaghi E., Bao M., Garaniya V., Abdussamie N., Pichard A., Abbassi R., 2025. Performance evaluation of point-absorber wave energy converters; energy extraction and structural integrity aspects. Ocean Engineering, 317, pp. 119983.
  • [10] Gradowski M., Gomes R.P.F., Alves M., 2020. Hydrodynamic optimisation of an axisymmetric floating oscillating water column type wave energy converter with an enlarged inner tube. Renewable Energy, 162, pp. 1519–1532.
  • [11] Guo B., Ringwood J.V., 2021. Geometric optimisation of wave energy conversion devices: A survey. Applied Energy, 297, pp. 117100.
  • [12] Chen F., Duan D., Han Q., Yang X., Zhao F., 2019. Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, pp. 191–200.
  • [13] Chen Z., Zhou B., Zhang L., Sun L., Zhang X., 2018. Performance evaluation of a dual resonance wave-energy converter in irregular waves. Applied Ocean Research, 77, pp. 78–88.
  • [14] Pastor J., Liu Y., 2014. Power absorption modeling and optimization of a point absorbing wave energy converter using numerical method. Journal of Energy Resources Technology, 136(2), pp. 021202.
  • [15] Berenjkoob M.N., Ghiasi M., Soares C.G., 2021. Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion. Energy, 214, pp. 118998.
  • [16] Koh H.J., Ruy W.S., Cho I.H., Kweon H.M., 2015. Multi-objective optimum design of a buoy for the resonant-type wave energy converter. Journal of Marine Science and Technology, 20, pp. 53–63.
  • [17] Shadman M., Estefen S.F., Rodriguez C.A., Nogueira I.C.M., 2018. A geometrical optimization method applied to a heaving point absorber wave energy converter. Renewable Energy, 115, pp. 533–546.
  • [18] Aderinto T., Li H., 2019. Review on power performance and efficiency of wave energy converters. Energies, 12, pp. 4329.
  • [19] Azam A., Ahmed A., Wang H., Wang Y., Zhang Z., 2021b. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. Journal of Cleaner Production, pp. 126496.
  • [20] United Nations Department of Economic and Social Affairs, 2016. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York, USA.
  • [21] Beirao P.J.B.F.N., Malça C.M.D.S.P., 2014. Design and analysis of buoy geometries for a wave energy converter. International Journal of Energy and Environmental Engineering, 5(2–3), pp. 91.
  • [22] Aydoğan B., Ayat B., Yüksel Y., 2013. Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, 57, pp. 436–447.

Analysis and Optimization of Point Absorber Wave Energy System Buoys Using Ansys

Yıl 2025, Cilt: 8 Sayı: 2, 147 - 153, 30.11.2025
https://doi.org/10.34088/kojose.1695330

Öz

In this study, the hydrodynamic performance of four different point absorber buoy geometries, designed to harness energy from the vertical motion of waves, was analyzed using Ansys AQWA software. The analyses were conducted based on the average wave data of the Black Sea, and key hydrodynamic parameters, including Response Amplitude Operator (RAO), added mass, radiation damping, and excitation force, were evaluated. The results indicate that the P4 buoy geometry exhibits peak RAO values within the dominant wave frequency range of the Black Sea (0.5–0.7 rad/s), demonstrating superior energy absorption performance. In the same frequency range, the added mass values for P4 remained within 40–45 kg, contributing to enhanced energy efficiency. The radiation damping coefficient for P4 was found to range between 20–25 N/s, and its stability was attributed to the presence of a submerged mass and a center of gravity positioned near the ballast. Moreover, the excitation force for the P4 buoy reached the highest value among all geometries, with approximately 1900 N/m in the 0.5–0.7 rad/s frequency range. These findings highlight the P4 buoy as the most efficient and hydrodynamically favorable design for wave energy conversion under Black Sea conditions.

Etik Beyan

All procedures performed in this study were conducted in accordance with national and international ethical standards. This study does not involve any human or animal participants, and therefore, ethical committee approval was not required. No special permissions were needed for the materials, data, or methods used.

Destekleyen Kurum

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Kaynakça

  • [1] International Energy Agency, 2025. Global Energy Review 2025. International Energy Agency, Paris, France.
  • [2] Oxford Institute for Energy Studies, 2025. Global Electricity Demand and the Net-Zero Pathway. Oxford Institute for Energy Studies, Oxford, UK.
  • [3] Liu H., Han P., 2024. Renewable energy development and carbon emissions: The role of electricity exchange. Journal of Cleaner Production, 439, pp. 140807.
  • [4] Wang D., Grimmelt M., 2023. Climate influence on the optimal stand-alone microgrid system with hybrid storage – a comparative study. Renewable Energy, 208, pp. 657–664.
  • [5] Bouhrim H., El Marjani A., Nechad R., Hajjout I., 2024. Ocean wave energy conversion: A review. Journal of Marine Science and Engineering, 12(11), pp. 1922.
  • [6] Vervaet T., Stratigaki V., De Backer B., Stockman K., Vantorre M., Troch P., 2022. Experimental modelling of point-absorber wave energy converter arrays: A comprehensive review, identification of research gaps and design of the WEC farm setup. Journal of Marine Science and Engineering, 10(8), pp. 1062.
  • [7] Wang H., Sun J., Xi Z., Dai S., Xing F., Xu M., 2024. Recent progress on built-in wave energy converters: A review. Journal of Marine Science and Engineering, 12(7), pp. 1176.
  • [8] Guo B., Wang T., Jin S., Duan S., Yang K., Zhao Y., 2022. A review of point absorber wave energy converters. Journal of Marine Science and Engineering, 10(10), pp. 1534.
  • [9] Abaei M.M., Arzaghi E., Bao M., Garaniya V., Abdussamie N., Pichard A., Abbassi R., 2025. Performance evaluation of point-absorber wave energy converters; energy extraction and structural integrity aspects. Ocean Engineering, 317, pp. 119983.
  • [10] Gradowski M., Gomes R.P.F., Alves M., 2020. Hydrodynamic optimisation of an axisymmetric floating oscillating water column type wave energy converter with an enlarged inner tube. Renewable Energy, 162, pp. 1519–1532.
  • [11] Guo B., Ringwood J.V., 2021. Geometric optimisation of wave energy conversion devices: A survey. Applied Energy, 297, pp. 117100.
  • [12] Chen F., Duan D., Han Q., Yang X., Zhao F., 2019. Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, pp. 191–200.
  • [13] Chen Z., Zhou B., Zhang L., Sun L., Zhang X., 2018. Performance evaluation of a dual resonance wave-energy converter in irregular waves. Applied Ocean Research, 77, pp. 78–88.
  • [14] Pastor J., Liu Y., 2014. Power absorption modeling and optimization of a point absorbing wave energy converter using numerical method. Journal of Energy Resources Technology, 136(2), pp. 021202.
  • [15] Berenjkoob M.N., Ghiasi M., Soares C.G., 2021. Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion. Energy, 214, pp. 118998.
  • [16] Koh H.J., Ruy W.S., Cho I.H., Kweon H.M., 2015. Multi-objective optimum design of a buoy for the resonant-type wave energy converter. Journal of Marine Science and Technology, 20, pp. 53–63.
  • [17] Shadman M., Estefen S.F., Rodriguez C.A., Nogueira I.C.M., 2018. A geometrical optimization method applied to a heaving point absorber wave energy converter. Renewable Energy, 115, pp. 533–546.
  • [18] Aderinto T., Li H., 2019. Review on power performance and efficiency of wave energy converters. Energies, 12, pp. 4329.
  • [19] Azam A., Ahmed A., Wang H., Wang Y., Zhang Z., 2021b. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. Journal of Cleaner Production, pp. 126496.
  • [20] United Nations Department of Economic and Social Affairs, 2016. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York, USA.
  • [21] Beirao P.J.B.F.N., Malça C.M.D.S.P., 2014. Design and analysis of buoy geometries for a wave energy converter. International Journal of Energy and Environmental Engineering, 5(2–3), pp. 91.
  • [22] Aydoğan B., Ayat B., Yüksel Y., 2013. Black Sea wave energy atlas from 13 years hindcasted wave data. Renewable Energy, 57, pp. 436–447.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Okyanus Mühendisliği, Deniz Mühendisliği (Diğer), Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Fatih Alver 0000-0003-3710-7429

Yayımlanma Tarihi 30 Kasım 2025
Gönderilme Tarihi 8 Mayıs 2025
Kabul Tarihi 29 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Alver, F. (2025). Analysis and Optimization of Point Absorber Wave Energy System Buoys Using Ansys. Kocaeli Journal of Science and Engineering, 8(2), 147-153. https://doi.org/10.34088/kojose.1695330