Araştırma Makalesi
BibTex RIS Kaynak Göster

GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS

Yıl 2016, Cilt: 4 Sayı: 1, 179 - 184, 01.04.2016

Öz

Using a generalized translation operator, we obtain an analog of Younis Theorem 5.2 in [5] for the generalized Fourier-Dunkl transform for func- tions satisfying the (; )-generalized Dunkl Lipschitz condition in the space L2 ;n.

Kaynakça

  • [1] S. A. Al Sadhan, R. F. Al Subaie and M. A. Mourou, Harmonic Analysis Associated with A First-Order Singular Di erential-Di erence Operator on the Real Line. Current Advances in Mathematics Research, 1,(2014), 23-34.
  • [2] E. S. Belkina and S. S. Platonov, Equivalence of K-Functionnals and Modulus of Smooth- ness Constructed by Generalized Dunkl Translations, Izv. Vyssh. Uchebn. Zaved. Mat., No. 8(2008), 3-15.
  • [3] C. F. Dunkl, Di erential-Di erence Operators Associated to Re ection Groups. Transactions of the American Mathematical Society, 311,(1989), 167-183.
  • [4] C. F. Dunkl, Hankel Transforms Associated to Finite Re ection Groups. Contemporary Math- ematics, 138,(1992), 128- 138.
  • [5] M. S. Younis, Fourier transforms of Dini-Lipschitz Functions. Int. J. Math. Math. Sci. 9 (2),(1986), 301312. doi:10.1155/S0161171286000376.
  • [6] R. F. Al Subaie and M. A. Mourou, Inversion of Two Dunkl Type Intertwining Operators on R Using Generalized Wavelets. Far East Journal of Applied Mathematics, 88,(2014), 91-120.
Yıl 2016, Cilt: 4 Sayı: 1, 179 - 184, 01.04.2016

Öz

Kaynakça

  • [1] S. A. Al Sadhan, R. F. Al Subaie and M. A. Mourou, Harmonic Analysis Associated with A First-Order Singular Di erential-Di erence Operator on the Real Line. Current Advances in Mathematics Research, 1,(2014), 23-34.
  • [2] E. S. Belkina and S. S. Platonov, Equivalence of K-Functionnals and Modulus of Smooth- ness Constructed by Generalized Dunkl Translations, Izv. Vyssh. Uchebn. Zaved. Mat., No. 8(2008), 3-15.
  • [3] C. F. Dunkl, Di erential-Di erence Operators Associated to Re ection Groups. Transactions of the American Mathematical Society, 311,(1989), 167-183.
  • [4] C. F. Dunkl, Hankel Transforms Associated to Finite Re ection Groups. Contemporary Math- ematics, 138,(1992), 128- 138.
  • [5] M. S. Younis, Fourier transforms of Dini-Lipschitz Functions. Int. J. Math. Math. Sci. 9 (2),(1986), 301312. doi:10.1155/S0161171286000376.
  • [6] R. F. Al Subaie and M. A. Mourou, Inversion of Two Dunkl Type Intertwining Operators on R Using Generalized Wavelets. Far East Journal of Applied Mathematics, 88,(2014), 91-120.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

R. Daher

S. El Ouadıh

M. El Hamma Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2016
Gönderilme Tarihi 10 Temmuz 2014
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 1

Kaynak Göster

APA Daher, R., Ouadıh, S. E., & Hamma, M. E. (2016). GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS. Konuralp Journal of Mathematics, 4(1), 179-184.
AMA Daher R, Ouadıh SE, Hamma ME. GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS. Konuralp J. Math. Nisan 2016;4(1):179-184.
Chicago Daher, R., S. El Ouadıh, ve M. El Hamma. “GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS”. Konuralp Journal of Mathematics 4, sy. 1 (Nisan 2016): 179-84.
EndNote Daher R, Ouadıh SE, Hamma ME (01 Nisan 2016) GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS. Konuralp Journal of Mathematics 4 1 179–184.
IEEE R. Daher, S. E. Ouadıh, ve M. E. Hamma, “GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS”, Konuralp J. Math., c. 4, sy. 1, ss. 179–184, 2016.
ISNAD Daher, R. vd. “GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS”. Konuralp Journal of Mathematics 4/1 (Nisan 2016), 179-184.
JAMA Daher R, Ouadıh SE, Hamma ME. GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS. Konuralp J. Math. 2016;4:179–184.
MLA Daher, R. vd. “GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS”. Konuralp Journal of Mathematics, c. 4, sy. 1, 2016, ss. 179-84.
Vancouver Daher R, Ouadıh SE, Hamma ME. GENERALIZED FOURIER-DUNKL TRANSFORM OF (; )-GENERALIZED DUNKL LIPSCHITZ FUNCTIONS. Konuralp J. Math. 2016;4(1):179-84.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.