Research Article
BibTex RIS Cite

ON SHERMAN'S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS

Year 2016, Volume: 4 Issue: 2, 255 - 270, 01.10.2016

Abstract

New generalizations of Sherman's inequality for convex functions of higher order are obtained by using Hermite's interpolating polynomials and Green's function. The Ostrowski and Gruss type bounds for the identity related to generalized Sherman's inequality are established. Some applications are discussed.

References

  • [1] M. Adil Khan, N. Latif, I. Peric and J. Pecaric, On Sapogov's extension of Cebysev's inequality, Thai J. Math., 10(2) (2012), 617-633.
  • [2] M. Adil Khan, Naveed Latif, I. Peric and J. Pecaric, On majorization for matrices, Math. Balkanica, 27 (2013), 13-19.
  • [3] M. Adil Khan, M. Niezgoda and J. Pecaric, On a re nement of the majorization type inequality, Demonstratio Math., 44(1) (2011), 49-57.
  • [4] M. Adil Khan, N. Latif and J. Pecaric, Generalization of majorization theorem, J. Math. Inequal., 9(3) (2015), 847-872.
  • [5] M. Adil Khan, Sadia Khalid and J. Pecaric, Re nements of some majorization type inequalities, J. Math. Inequal.,7(1) (2013), 73-92.
  • [6] R. P. Agarwal, S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality by Lidstone's interpolating polynomial, J. Inequal. Appl. 6, 2016 (2016)
  • [7] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publisher, Dordrecht, 1993.
  • [8] P. R. Beesack, On the Green's function of an N-point boundary value problem, Paci c J. Math. 12 (1962), 801-812. Kluwer Academic Publishers, 1993.
  • [9] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal. 8 (1) (2014), 159-170.
  • [10] S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality, Per. Math. Hung. to appear.
  • [11] J. Jaksetic and J. Pecaric, Exponential Convexity Method, J. Convex Anal. 20 (2013), No. 1, 181-197.
  • [12] N. Latif, J. Pecaric and I. Peric, On Majorization, Favard and Berwald's inequalities, Annals of Functional Analysis, 2 (2011), no. 1, 31-50.
  • [13] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear di erential equations, Soviet Math. Dokl., 4 (1963), 121-124.
  • [14] J. Pecaric and J. Peric, Improvement of the Giaccardi and the Petrovic Inequality and Related Stolarsky Type Means, A. Univ. Craiova Ser. Mat. Inform., 39 (1) (2012), 65-75.
  • [15] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc.
  • [16] S. Sherman, On a theorem of Hardy, Littlewood, Polya and Blackwell, Proc. Nat. Acad. Sci. USA, 37 (1) (1957), 826-831.
  • [17] D. V. Widder: Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51 (1942), 387-398.
Year 2016, Volume: 4 Issue: 2, 255 - 270, 01.10.2016

Abstract

References

  • [1] M. Adil Khan, N. Latif, I. Peric and J. Pecaric, On Sapogov's extension of Cebysev's inequality, Thai J. Math., 10(2) (2012), 617-633.
  • [2] M. Adil Khan, Naveed Latif, I. Peric and J. Pecaric, On majorization for matrices, Math. Balkanica, 27 (2013), 13-19.
  • [3] M. Adil Khan, M. Niezgoda and J. Pecaric, On a re nement of the majorization type inequality, Demonstratio Math., 44(1) (2011), 49-57.
  • [4] M. Adil Khan, N. Latif and J. Pecaric, Generalization of majorization theorem, J. Math. Inequal., 9(3) (2015), 847-872.
  • [5] M. Adil Khan, Sadia Khalid and J. Pecaric, Re nements of some majorization type inequalities, J. Math. Inequal.,7(1) (2013), 73-92.
  • [6] R. P. Agarwal, S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality by Lidstone's interpolating polynomial, J. Inequal. Appl. 6, 2016 (2016)
  • [7] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publisher, Dordrecht, 1993.
  • [8] P. R. Beesack, On the Green's function of an N-point boundary value problem, Paci c J. Math. 12 (1962), 801-812. Kluwer Academic Publishers, 1993.
  • [9] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal. 8 (1) (2014), 159-170.
  • [10] S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality, Per. Math. Hung. to appear.
  • [11] J. Jaksetic and J. Pecaric, Exponential Convexity Method, J. Convex Anal. 20 (2013), No. 1, 181-197.
  • [12] N. Latif, J. Pecaric and I. Peric, On Majorization, Favard and Berwald's inequalities, Annals of Functional Analysis, 2 (2011), no. 1, 31-50.
  • [13] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear di erential equations, Soviet Math. Dokl., 4 (1963), 121-124.
  • [14] J. Pecaric and J. Peric, Improvement of the Giaccardi and the Petrovic Inequality and Related Stolarsky Type Means, A. Univ. Craiova Ser. Mat. Inform., 39 (1) (2012), 65-75.
  • [15] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc.
  • [16] S. Sherman, On a theorem of Hardy, Littlewood, Polya and Blackwell, Proc. Nat. Acad. Sci. USA, 37 (1) (1957), 826-831.
  • [17] D. V. Widder: Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51 (1942), 387-398.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M. Adil Khan

S. İvelic Bradanovıc This is me

J. Pecarıc This is me

Publication Date October 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Khan, M. A., Bradanovıc, S. İ., & Pecarıc, J. (2016). ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp Journal of Mathematics, 4(2), 255-270.
AMA Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. October 2016;4(2):255-270.
Chicago Khan, M. Adil, S. İvelic Bradanovıc, and J. Pecarıc. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 255-70.
EndNote Khan MA, Bradanovıc Sİ, Pecarıc J (October 1, 2016) ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp Journal of Mathematics 4 2 255–270.
IEEE M. A. Khan, S. İ. Bradanovıc, and J. Pecarıc, “ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS”, Konuralp J. Math., vol. 4, no. 2, pp. 255–270, 2016.
ISNAD Khan, M. Adil et al. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics 4/2 (October 2016), 255-270.
JAMA Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. 2016;4:255–270.
MLA Khan, M. Adil et al. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 255-70.
Vancouver Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. 2016;4(2):255-70.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.