Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 2, 87 - 95, 15.10.2017

Öz

Kaynakça

  • [1] Liu, S.-J. , Lin, S.-D., Srivastava, H.M. and Wong, M.-M. , Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions, App. Mathematcis and Comp., 218 (2012) 7685-7693.
  • [2] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [3] Srivastava, H. M. and Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Westensch. Indag. Math. 31 (1969) 449-457.
  • [4] Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G.,Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1955.
  • [5] Ozmen, N. and Erkus-Duman, E., On the Poisson-Charlier polynomials, Serdica Math. J. 41. (2015), 457-470.
  • [6] Ozmen, N. and Erkus-Duman, E., Some families of generating functions for the generalized Cesaro polynomials, J. Comput. Anal. Appl., 25(4) (2018), 670-683.
  • [7] Chan, W.-C. C. , Chyan, C.-J. and Srivastava, H. M. The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), 139-148.
  • [8] Erkus, E. and Srivastava, H. M, A uni ed presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [9] Ozmen, N. and Erkus-Duman, E., Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558, 1124 (2013).
  • [10] AktaŞ, R. and Erkus-Duman, E., \The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3), (2013), 531-544.
  • [11] Kravchenko, I-V.,Kravchenko, V-V. and Torba, S-M., Solution of parabolic free boundary problems using transmuted heat polynomials, arXiv:1706.07100v2 [math.AP] 19 Jul 2017.

GENERALIZED HEAT POLYNOMIALS

Yıl 2017, Cilt: 5 Sayı: 2, 87 - 95, 15.10.2017

Öz

The present study deals with some new properties for the generalized heat polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases for these polynomials. In addition, we derive a theorem giving certain families of bilateral generating functions for the generalized Heat polynomials and the generalized Lauricella functions. Finally, we get several interesting results of this theorem.

Kaynakça

  • [1] Liu, S.-J. , Lin, S.-D., Srivastava, H.M. and Wong, M.-M. , Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions, App. Mathematcis and Comp., 218 (2012) 7685-7693.
  • [2] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [3] Srivastava, H. M. and Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Westensch. Indag. Math. 31 (1969) 449-457.
  • [4] Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G.,Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1955.
  • [5] Ozmen, N. and Erkus-Duman, E., On the Poisson-Charlier polynomials, Serdica Math. J. 41. (2015), 457-470.
  • [6] Ozmen, N. and Erkus-Duman, E., Some families of generating functions for the generalized Cesaro polynomials, J. Comput. Anal. Appl., 25(4) (2018), 670-683.
  • [7] Chan, W.-C. C. , Chyan, C.-J. and Srivastava, H. M. The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), 139-148.
  • [8] Erkus, E. and Srivastava, H. M, A uni ed presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [9] Ozmen, N. and Erkus-Duman, E., Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558, 1124 (2013).
  • [10] AktaŞ, R. and Erkus-Duman, E., \The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3), (2013), 531-544.
  • [11] Kravchenko, I-V.,Kravchenko, V-V. and Torba, S-M., Solution of parabolic free boundary problems using transmuted heat polynomials, arXiv:1706.07100v2 [math.AP] 19 Jul 2017.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Articles
Yazarlar

Nejla Özmen

Yayımlanma Tarihi 15 Ekim 2017
Gönderilme Tarihi 3 Ağustos 2017
Kabul Tarihi 2 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Özmen, N. (2017). GENERALIZED HEAT POLYNOMIALS. Konuralp Journal of Mathematics, 5(2), 87-95.
AMA Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. Ekim 2017;5(2):87-95.
Chicago Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics 5, sy. 2 (Ekim 2017): 87-95.
EndNote Özmen N (01 Ekim 2017) GENERALIZED HEAT POLYNOMIALS. Konuralp Journal of Mathematics 5 2 87–95.
IEEE N. Özmen, “GENERALIZED HEAT POLYNOMIALS”, Konuralp J. Math., c. 5, sy. 2, ss. 87–95, 2017.
ISNAD Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics 5/2 (Ekim 2017), 87-95.
JAMA Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. 2017;5:87–95.
MLA Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics, c. 5, sy. 2, 2017, ss. 87-95.
Vancouver Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. 2017;5(2):87-95.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.