[1] N Abdel-All, S. Mohamed and M. Al-Dossary, Evolution of Generalized Space Curve as a Function of Its Local Geometry, Applied Mathematics, 5
(2014), 2381-2392. doi: 10.4236/am.2014.515230.
[2] K. Bharathi and M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formulae, Indian J. Pure Appl. Math., 16 (1985), 741-756.
[3] G. Chirikjian and J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom., 10 (1994), 343-354.
[4] M. Desbrun and M.P. Cani-Gascuel, Active implicit surface for animation, Proc. Graphics Interface Canadian Inf. Process. Soc., (1998) 143-150
[5] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
[6] İ. Gök, O.Z. Okuyucu, F. Kahraman and H.H. Hacisaliho˘glu, On the quaternionic B 2-slant helices in the Euclidean space E4, Adv. Appl. Clifford
Algebras, 21(4) (2011), 707-719.
[7] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
[8] N. G¨urb¨uz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sciences, 4 (2009), 1599-1604.
[9] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour models, Proc. 1st Int. Conference on Computer Vision, (1987), 259-268.
[10] T. Körpınar and S. Bas¸, Characterization of Quaternionic Curves by Inextenaible Flows, Prespacetime Journal, 7 (2016), 1680-1684.
[11] Z. Küçükarslan Yüzbas¸ıand D.W. Yoon, Inextensible Flows of Curves on Lightlike Surfaces, Mathematics, 6 (2018), 224.
[12] D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156-1162.
[13] H.Q. Lu, J.S. Todhunter and T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,
Image Underst., 56 (1993), 265-285.
[14] O.Z. Okuyucu, Characterizations of the quaternionic Mannheim curves in Euclidean space E4, Mathematical Combinatorics, 2 (2013), 44-53.
[15] A. Uc¸um, H.A. Erdem and K. ˙Ilarslan, Inextensible flows of partially null and pseudo null curves in semi-euclidean 4-space with index 2, Novi Sad J.
Math., 46(1) (2016), 115-129.
[16] D.J. Unger, Developable Surfaces in Elastoplastic Fracture Mechanics International Journal of Fracture, 50 (1991), 33-38.
http://dx.doi.org/10.1007/BF00032160
[18] A.F. Yıldız, O.Z. Okuyucu and Ö.G. Yıldız, Inextensible Flow Of A Semi-Real Quaternionic Curve In Semi-Euclidean Space R42
, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 323-332.
[19] Ö .G. Yıldız, M. Tosun, and S. Ö . Karakus¸, A note on inextensible flows of curves in En, Int. Electron. J. Geom., 6(2) (2013), 118-124.
[20] Ö . G. Yıldız, S. Ersoy, and M. Masal, A note on inextensible flows of curves on oriented surface, CUBO A Mathematical Journal, 16(3) (2014), 11-19.
[21] Ö . G. Yıldız and O.Z.Okuyucu, Inextensible Flows of Curves in Lie Groups, Caspian Journal of Mathematical Sciences (CJMS), 2 (2014), 23-32.
[22] Ö . G. Yıldız and M. Tosun A Note on Evolution of Curves in the Minkowski Spaces, Adv. Appl. Clifford Algebras, 27 (2017), 2873-2884.
A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$
Year 2019,
Volume: 7 Issue: 2, 462 - 469, 15.10.2019
In this paper, we investigate the evolution of quaternionic curve in Euclidean 4-space $\mathbb{R}^{4}$. We obtain evolution equations of the Frenet frame and curvatures. Then we give integrability conditions for the evolutions. Finally we give examples of evolution of curvatures.
[1] N Abdel-All, S. Mohamed and M. Al-Dossary, Evolution of Generalized Space Curve as a Function of Its Local Geometry, Applied Mathematics, 5
(2014), 2381-2392. doi: 10.4236/am.2014.515230.
[2] K. Bharathi and M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formulae, Indian J. Pure Appl. Math., 16 (1985), 741-756.
[3] G. Chirikjian and J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom., 10 (1994), 343-354.
[4] M. Desbrun and M.P. Cani-Gascuel, Active implicit surface for animation, Proc. Graphics Interface Canadian Inf. Process. Soc., (1998) 143-150
[5] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
[6] İ. Gök, O.Z. Okuyucu, F. Kahraman and H.H. Hacisaliho˘glu, On the quaternionic B 2-slant helices in the Euclidean space E4, Adv. Appl. Clifford
Algebras, 21(4) (2011), 707-719.
[7] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
[8] N. G¨urb¨uz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sciences, 4 (2009), 1599-1604.
[9] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour models, Proc. 1st Int. Conference on Computer Vision, (1987), 259-268.
[10] T. Körpınar and S. Bas¸, Characterization of Quaternionic Curves by Inextenaible Flows, Prespacetime Journal, 7 (2016), 1680-1684.
[11] Z. Küçükarslan Yüzbas¸ıand D.W. Yoon, Inextensible Flows of Curves on Lightlike Surfaces, Mathematics, 6 (2018), 224.
[12] D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156-1162.
[13] H.Q. Lu, J.S. Todhunter and T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP,
Image Underst., 56 (1993), 265-285.
[14] O.Z. Okuyucu, Characterizations of the quaternionic Mannheim curves in Euclidean space E4, Mathematical Combinatorics, 2 (2013), 44-53.
[15] A. Uc¸um, H.A. Erdem and K. ˙Ilarslan, Inextensible flows of partially null and pseudo null curves in semi-euclidean 4-space with index 2, Novi Sad J.
Math., 46(1) (2016), 115-129.
[16] D.J. Unger, Developable Surfaces in Elastoplastic Fracture Mechanics International Journal of Fracture, 50 (1991), 33-38.
http://dx.doi.org/10.1007/BF00032160
[18] A.F. Yıldız, O.Z. Okuyucu and Ö.G. Yıldız, Inextensible Flow Of A Semi-Real Quaternionic Curve In Semi-Euclidean Space R42
, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 323-332.
[19] Ö .G. Yıldız, M. Tosun, and S. Ö . Karakus¸, A note on inextensible flows of curves in En, Int. Electron. J. Geom., 6(2) (2013), 118-124.
[20] Ö . G. Yıldız, S. Ersoy, and M. Masal, A note on inextensible flows of curves on oriented surface, CUBO A Mathematical Journal, 16(3) (2014), 11-19.
[21] Ö . G. Yıldız and O.Z.Okuyucu, Inextensible Flows of Curves in Lie Groups, Caspian Journal of Mathematical Sciences (CJMS), 2 (2014), 23-32.
[22] Ö . G. Yıldız and M. Tosun A Note on Evolution of Curves in the Minkowski Spaces, Adv. Appl. Clifford Algebras, 27 (2017), 2873-2884.
Yıldız, Ö. G., & İçer, Ö. (2019). A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp Journal of Mathematics, 7(2), 462-469.
AMA
Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. October 2019;7(2):462-469.
Chicago
Yıldız, Önder Gökmen, and Özlem İçer. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 462-69.
EndNote
Yıldız ÖG, İçer Ö (October 1, 2019) A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp Journal of Mathematics 7 2 462–469.
IEEE
Ö. G. Yıldız and Ö. İçer, “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”, Konuralp J. Math., vol. 7, no. 2, pp. 462–469, 2019.
ISNAD
Yıldız, Önder Gökmen - İçer, Özlem. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 7/2 (October 2019), 462-469.
JAMA
Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. 2019;7:462–469.
MLA
Yıldız, Önder Gökmen and Özlem İçer. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 462-9.
Vancouver
Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. 2019;7(2):462-9.