Year 2021,
Volume: 9 Issue: 2, 316 - 323, 15.10.2021
Ramazan Karataş
,
Ali Gelişken
References
- A. Gelişken, On a system of rational difference equation, J. Computational Analysis and Applications, 23(4) (2017), 593-606.
- D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(4k+3)})/(1+∏_{t=0}²x_{n-(k+1)t-k})), Journal of Mathematical Sciences, 6(222) (2017), 762-771.
- D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(k+1)})/(1+x_{n}x_{n-1}...x_{n-k})), Journal of Mathematical Sciences, 234(1) (2018), 73-81.
- E. M. Elsayed, F. Alzahrani, H. S. Alayachi, Formulas and properties of some class of nonlinear difference equation, J. Computational Analysis and Applications, 24(8) (2018),1517-1531.
- M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Investigating some properties of a fourth order difference equation, J. Computational Analysis and Applications, 28(2) (2020), 243-253.
- R. Abo-Zeid, Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42(2018), 1-10.
- R. Karatas, Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60(2010), 830-839.
- R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-(2k+1)})/(-a+x_{n-k}x_{n-(2k+1)})), Fasciculi Mathematici, 45(2010), 37-45.
- S. Ergin, R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-k})/(a-∏_{i=0}^{k}x_{n-i})), Thai Journal of Mathematics, 14(2) (2016), 391-397.
- V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
A Solution Form of A Higher Order Difference Equation
Year 2021,
Volume: 9 Issue: 2, 316 - 323, 15.10.2021
Ramazan Karataş
,
Ali Gelişken
Abstract
The main aim of this paper is to investigate the solutions of the difference equation \[ x_{n+1}=\frac{(-1)^{n}ax_{n-2k}}{a+(-1)^{n}\prod\limits_{i=0}^{2k}x_{n-i}% }\text{ },~n=0,1,... \] where $k$ is a positive integer and initial conditions are non zero real numbers with $\prod\limits_{i=0}^{2k}x_{n-i}\neq\mp a.$
References
- A. Gelişken, On a system of rational difference equation, J. Computational Analysis and Applications, 23(4) (2017), 593-606.
- D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(4k+3)})/(1+∏_{t=0}²x_{n-(k+1)t-k})), Journal of Mathematical Sciences, 6(222) (2017), 762-771.
- D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(k+1)})/(1+x_{n}x_{n-1}...x_{n-k})), Journal of Mathematical Sciences, 234(1) (2018), 73-81.
- E. M. Elsayed, F. Alzahrani, H. S. Alayachi, Formulas and properties of some class of nonlinear difference equation, J. Computational Analysis and Applications, 24(8) (2018),1517-1531.
- M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Investigating some properties of a fourth order difference equation, J. Computational Analysis and Applications, 28(2) (2020), 243-253.
- R. Abo-Zeid, Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42(2018), 1-10.
- R. Karatas, Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60(2010), 830-839.
- R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-(2k+1)})/(-a+x_{n-k}x_{n-(2k+1)})), Fasciculi Mathematici, 45(2010), 37-45.
- S. Ergin, R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-k})/(a-∏_{i=0}^{k}x_{n-i})), Thai Journal of Mathematics, 14(2) (2016), 391-397.
- V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.